期刊文献+

Engineering microscale systems for fully autonomous intracellular neural interfaces

原文传递
导出
摘要 Conventional electrodes and associated positioning systems for intracellular recording from single neurons in vitro and in vivo are large and bulky,which has largely limited their scalability.Further,acquiring successful intracellular recordings is very tedious,requiring a high degree of skill not readily achieved in a typical laboratory.We report here a robotic,MEMS-based intracellular recording system to overcome the above limitations associated with form factor,scalability,and highly skilled and tedious manual operations required for intracellular recordings.This system combines three distinct technologies:(1)novel microscale,glass–polysilicon penetrating electrode for intracellular recording;(2)electrothermal microactuators for precise microscale movement of each electrode;and(3)closed-loop control algorithm for autonomous positioning of electrode inside single neurons.Here we demonstrate the novel,fully integrated system of glass–polysilicon microelectrode,microscale actuators,and controller for autonomous intracellular recordings from single neurons in the abdominal ganglion of Aplysia californica(n=5 cells).Consistent resting potentials(<−35 mV)and action potentials(>60 mV)were recorded after each successful penetration attempt with the controller and microactuated glass–polysilicon microelectrodes.The success rate of penetration and quality of intracellular recordings achieved using electrothermal microactuators were comparable to that of conventional positioning systems.Preliminary data from in vivo experiments in anesthetized rats show successful intracellular recordings.The MEMS-based system offers significant advantages:(1)reduction in overall size for potential use in behaving animals,(2)scalable approach to potentially realize multi-channel recordings,and(3)a viable method to fully automate measurement of intracellular recordings.This system will be evaluated in vivo in future rodent studies.
出处 《Microsystems & Nanoengineering》 EI CSCD 2020年第1期1276-1295,共20页 微系统与纳米工程(英文)
基金 This research was supported by the NIH R21NS084492-01 grant。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部