期刊文献+

Chemomechanical modeling of lithiation-induced failure in high-volume-change electrode materials for lithium ion batteries 被引量:5

原文传递
导出
摘要 The rapidly increasing demand for efficient energy storage systems in the last two decades has stimulated enormous efforts to the development of high-capacity,high-power,durable lithium ion batteries.Inherent to the high-capacity electrode materials is material degradation and failure due to the large volumetric changes during the electrochemical cycling,causing fast capacity decay and low cycle life.This review surveys recent progress in continuum-level computational modeling of the degradation mechanisms of high-capacity anode materials for lithium-ion batteries.Using silicon(Si)as an example,we highlight the strong coupling between electrochemical kinetics and mechanical stress in the degradation process.We show that the coupling phenomena can be tailored through a set of materials design strategies,including surface coating and porosity,presenting effective methods to mitigate the degradation.Validated by the experimental data,the modeling results lay down a foundation for engineering,diagnosis,and optimization of high-performance lithium ion batteries.
作者 Sulin Zhang
出处 《npj Computational Materials》 SCIE EI 2017年第1期424-434,共11页 计算材料学(英文)
基金 the support by the National Science Foundation through the projects CMMI-0900692,DMR-1610430,and ECCS-1610331.
  • 相关文献

参考文献1

二级参考文献32

  • 1Zhang, W. J.: A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power Sources 196, 13-24 (2011).
  • 2Beaulieu, L. Y., Eberman, K. W., Turner, R. L., et al.: Colos- sal reversible volume changes in lithium alloys. Electrochem. Solid State Lett. 4, A137-A140 (2001).
  • 3Christensen, J., Newman, J.: Stress generation and fracture in lithium insertion materials. J Solid State Electr. 10, 293-319 (2006).
  • 4Chan, C. K., Peng, H. L., Liu, G., et al.: High-performance lithium battery anodes using silicon nanowires. Nature Nan- otechnology 3, 31-35 (2008).
  • 5Cui, L. F., Ruffo, R., Chan, C. K., et al.: Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. Nano Letters 9, 491-495 (2009).
  • 6Song, T., Xia, J. L., Lee, J. H., et al.: Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. Nano Letters 10, 1710-1716 (2010).
  • 7Magasinski, A., Dixon, P., Hertzberg, B., et al.: High- performance lithium-ion anodes using a hierarchical bottom-up approach. Nature Materials 9, 353-358 (2010).
  • 8Hu, L., Wu, H., Gao, Y., et al.: Silicon-carbon nanotube coax- ial sponge as li-ion anodes with high areal capacity. Advanced Energy Materials 523-527 (2011).
  • 9Kang, B., Ceder, G.: Battery materials for ultrafast charging and discharging. Nature. 458, 190-193 (2009).
  • 10Bower, A., Guduru, P., Sethuraman, V.: A finite strain model of stress, diffusion, plastic flow, and electrochemical reactions in a lithium-ion half-cell. Journal of the Mechanics and Physics of Solids 59, 804-828 (2011).

共引文献1

同被引文献17

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部