期刊文献+

A microscale optical implant for continuous in vivo monitoring of intraocular pressure 被引量:5

原文传递
导出
摘要 Intraocular pressure(IOP)is a key clinical parameter in glaucoma management.However,despite the potential utility of daily measurements of IOP in the context of disease management,the necessary tools are currently lacking,and IOP is typically measured only a few times a year.Here we report on a microscale implantable sensor that could provide convenient,accurate,ondemand IOP monitoring in the home environment.When excited by broadband near-infrared(NIR)light from a tungsten bulb,the sensor’s optical cavity reflects a pressure-dependent resonance signature that can be converted to IOP.NIR light is minimally absorbed by tissue and is not perceived visually.The sensor’s nanodot-enhanced cavity allows for a 3–5 cm readout distance with an average accuracy of 0.29 mm Hg over the range of 0–40 mm Hg.Sensors were mounted onto intraocular lenses or silicone haptics and secured inside the anterior chamber in New Zealand white rabbits.Implanted sensors provided continuous in vivo tracking of short-term transient IOP elevations and provided continuous measurements of IOP for up to 4.5 months.
出处 《Microsystems & Nanoengineering》 EI CSCD 2017年第1期11-19,共9页 微系统与纳米工程(英文)
基金 The project was funded by the National Institute of Health(NIH)EY024582 the Basic Science Research Program through the National Research Foundation of Korea(NRF)under the Ministry of Education(NRF-2013R1A6A3A03026384).
  • 相关文献

同被引文献12

引证文献5

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部