期刊文献+

Transcriptome profiling reveals the roles of pigment mechanisms in postharvest broccoli yellowing 被引量:6

下载PDF
导出
摘要 Postharvest broccoli is prone to yellowing during storage,which is the key factor leading to a reduction in value.To explore appropriate control methods,it is important to understand the mechanisms of yellowing.We analyzed the genes related to the metabolism of chlorophyll,carotenoids,and flavonoids and the transcription factors(TFs)involved in broccoli yellowing using transcriptome sequencing profiling.Broccoli stored at 10℃showed slight yellowing on postharvest day 5 and serious symptoms on day 12.There were significant changes in chlorophyll fluorescence kinetics,mainly manifesting as a decrease in the Fv/Fm value and an increase in nonphotochemical quenching,during the yellowing process.Transcriptome sequencing profiles from samples of fresh broccoli and broccoli with slight and severe yellowing revealed 6,5,and 4 differentially expressed genes involved in chlorophyll metabolism,carotenoid biosynthesis,and flavonoid biosynthesis,respectively.The transcription factor gene ontology categories showed that the MYB,bHLH,and bZip gene families were involved in chlorophyll metabolism.In addition,the transcription factor families included NACs and ethylene response factors(ERFs)that regulated carotenoid biosynthesis.Reverse transcription polymerase chain reaction further confirmed that bHLH66,PIF4,LOB13,NAC92,and APL were vital transcription factors that potentially regulated the CAO and HYD genes and were involved in chlorophyll metabolism and the carotenoid biosynthetic process.The flavonoid biosynthetic pathway was mainly regulated by MYBs,NACs,WRKYs,MADSs,and bZips.The results of the differentially expressed gene(DEG)and pigment content analyses indicated that the transcriptome data were accurately and positively associated with broccoli yellowing.
出处 《Horticulture Research》 SCIE 2019年第1期846-859,共14页 园艺研究(英文)
基金 supported by the National Key R&D Program of China(no.2016YFD0400103).
关键词 FV/FM process fir
  • 相关文献

同被引文献39

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部