摘要
随着医学技术的发展,麻醉科医师的工作范围拓展至围术期各个阶段,从而保障患者的生命安全和提供舒适化医疗。然而围术期的影响因素众多,麻醉科医师人员紧缺又易疲劳,难以满足日益增长的临床需求。自生物医学进入大数据时代后,医学数据增长速度已远快于传统人工分析数据的速度,传统算法已不适用于处理海量的医学数据,因此,深度学习开始发挥它的作用。本文就深度学习在麻醉学研究中的应用做一详细描述。
With the development of medical technology,the work of anesthesiologists has expanded to protect life safety and provide comfort of patients at all stages of the perioperative period.However,the influencing factors during the perioperative period are complicated.Anesthesiologists are short-staffed and overloaded with work,which makes it difficult to meet the increasing clinical needs.Since biomedicine entered the era of big data,the growth rate of medical data has been much faster than that of traditional manual analysis of data.Traditional algorithms are no longer suitable for processing massive medical data.Therefore,deep learning technique begins to play its role.This article gives a review of the application of deep learning in anesthesiology.
作者
王悠然
陈利海
葛亚力
WANG Youran;CHEN Lihai;GE Yali(Department of Anesthesiology,Nanjing First Hospital,Nanjing Medical University,Nanjing 210006,China)
出处
《临床麻醉学杂志》
CAS
CSCD
北大核心
2021年第7期762-764,共3页
Journal of Clinical Anesthesiology
关键词
深度学习
麻醉学
疾病预测
超声引导
Deep learning
Anesthesiology
Disease prediction
Ultrasound-guided