期刊文献+

深度学习在麻醉学研究中的应用进展

Progress of deep learning in anesthesiology
下载PDF
导出
摘要 随着医学技术的发展,麻醉科医师的工作范围拓展至围术期各个阶段,从而保障患者的生命安全和提供舒适化医疗。然而围术期的影响因素众多,麻醉科医师人员紧缺又易疲劳,难以满足日益增长的临床需求。自生物医学进入大数据时代后,医学数据增长速度已远快于传统人工分析数据的速度,传统算法已不适用于处理海量的医学数据,因此,深度学习开始发挥它的作用。本文就深度学习在麻醉学研究中的应用做一详细描述。 With the development of medical technology,the work of anesthesiologists has expanded to protect life safety and provide comfort of patients at all stages of the perioperative period.However,the influencing factors during the perioperative period are complicated.Anesthesiologists are short-staffed and overloaded with work,which makes it difficult to meet the increasing clinical needs.Since biomedicine entered the era of big data,the growth rate of medical data has been much faster than that of traditional manual analysis of data.Traditional algorithms are no longer suitable for processing massive medical data.Therefore,deep learning technique begins to play its role.This article gives a review of the application of deep learning in anesthesiology.
作者 王悠然 陈利海 葛亚力 WANG Youran;CHEN Lihai;GE Yali(Department of Anesthesiology,Nanjing First Hospital,Nanjing Medical University,Nanjing 210006,China)
出处 《临床麻醉学杂志》 CAS CSCD 北大核心 2021年第7期762-764,共3页 Journal of Clinical Anesthesiology
关键词 深度学习 麻醉学 疾病预测 超声引导 Deep learning Anesthesiology Disease prediction Ultrasound-guided
  • 相关文献

参考文献3

二级参考文献8

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部