期刊文献+

空气阴极微生物燃料电池的构型优化及其快速测定BOD的性能评价 被引量:4

Configuration optimization of air cathode microbial fuel cell and its performance evaluation for rapid determination of BOD
原文传递
导出
摘要 设计了一种新型双室空气阴极微生物燃料电池(MFC)并将其作为生物传感器,与传统双室空气阴极MFC进行对比,考察其电化学性能及用于快速检测BOD的性能。结果表明:新型空气阴极MFC可有效提高功率密度并降低内阻,其功率密度最高为897 mW·m^(-2),而内阻最低为92Ω;该MFC可用于直接快速检测高浓度有机物的BOD,对醋酸钠底物的线性检测限为1280 mg·L^(-1),在此底物浓度下MFC的检测时间为31.2~66 h,线性可决系数R2为0.97~0.99;对于GGA底物的线性检测限为1250 mg·L^(-1),在此底物浓度下MFC的检测时间为33~67 h,线性可决系数R^(2)为0.98。本研究可为MFC型BOD检测传感器的性能优化提供参考。 A new dual-chamber air cathode MFC was designed and compared with the traditional dual-chamber air cathode MFC to examine the electrochemical performance and the performance for rapid detection of BOD.Results show that the new designed air cathode MFC can effectively increase power density reaching up to897 mW·m^(-2) and reduce internal resistanceto as low as 92Ω.Moreover,it can be used to directly and quickly detect BOD of organic compounds with high concentration,with the linear detection limit of sodium acetate being 1280 mg·L^(-1),response time at this concentration being 31.2~66 h,and the linear coefficient of determination R^(2) being 0.97~0.99.The linear detection limit of GGA can reach 1250 mg·L^(-1).The response time at this concentration is 33~67 h,and the linear coefficient of determination R^(2) is 0.98.Our results provide a new pathway for the performance optimization of the MFC type BOD detection sensor.
作者 唐嘉丽 凌宇祥 于广平 刘坚 TANG Jiali;LING Yuxiang;YU Guangping;LIU Jian(Shenyang Institute of Automation in Guangzhou,Chinese Academy of Sciences,Guangzhou 511458,China)
出处 《环境工程学报》 CAS CSCD 北大核心 2021年第6期2155-2164,共10页 Chinese Journal of Environmental Engineering
基金 国家自然科学基金重大项目(61890933) 国家自然科学基金重点项目(61533002) 羊城创新创业领军人才支持计划(2019006)。
关键词 微生物燃料电池 构型优化 BOD 快速检测 性能评价 microbial fuel cells configuration optimization BOD rapid detection performance evaluation
  • 相关文献

参考文献1

二级参考文献41

  • 1黄霞,梁鹏,曹效鑫,范明志.无介体微生物燃料电池的研究进展[J].中国给水排水,2007,23(4):1-6. 被引量:46
  • 2Logan BE, Hamelers B, Rozendal R, et al. Microbial fuel cells: methodology and technology[J]. Environ Sci Technol, 2006, 40(17): 5181-5192.
  • 3He Z, Wagner N, Minteer SD, et al. An upflow microbial fuel cell with an interior cathode: assessment of the internal resistance by impedance spectroscopy[J]. Environ Sci Technol, 2006, 40(17): 5212-5217.
  • 4Khan M J, lqbal MT. Modelling and analysis of electrochemical, thermal, and reactant flow dynamics for a PEM fuel cell system[J]. Fuel Cells, 2005, 5(4): 463-475.
  • 5Logan BE. Mrobial Fuel Cell[M]. Hoboken: John Wiley and Sons Inc., 2008: 43-56.
  • 6Fan YZ, Sharbrough E, Liu H. Quantification of the internal resistance distribution of microbial fuel cells[J]. Environ Sei Technol, 2008, 42(21): 8101-8107.
  • 7He Z, Mansfeld F. Exploring the use of electrochemical impedance spectroscopy (EIS) in microbial fuel cell stud ies[J]. Energy Environ Sci, 2009, 2(2): 215-219.
  • 8Katz E, Willner I. Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: routes to impedimetric immunosensors, DNA-sensors, and enzyme biosensors[J]. Electroanal, 2003, 15(11): 913-947.
  • 9Liang P, Huang X, Fan MZ, et al. Composition and distribution of internal resistance in three types of microbial fuel cells[J]. Appl Microbiol Blot, 2007, 77(3): 551-558.
  • 10Logan BE, Cheng S, Watson V, et al. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells[J]. Environ Sci Technol, 2007, 41(9): 3341-3346.

共引文献21

同被引文献57

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部