期刊文献+

Multilayered skyscraper microchipsfabricated by hybrid “all-in-one”femtosecond laser processing

原文传递
导出
摘要 Multilayered microfluidic channels integrated with functional microcomponents are the general trend of future biochips,which is similar to the history of Si-integrated circuits from the planer to the three-dimensional(3D)configuration,since they offer miniaturization while increasing the integration degree and diversifying the applications in the reaction,catalysis,and cell cultures.In this paper,an optimized hybrid processing technology is proposed to create true multilayered microchips,by which“all-in-one”3D microchips can be fabricated with a successive procedure of 3D glass micromachining by femtosecond-laser-assisted wet etching(FLAE)and the integration of microcomponents into the fabricated microchannels by two-photon polymerization(TPP).To create the multilayered microchannels at different depths in glass substrates(the top layer was embedded at 200μm below the surface,and the underlying layers were constructed with a 200-μm spacing)with high uniformity and quality,the laser power density(13~16.9 TW/cm^(2))was optimized to fabricate different layers.To simultaneously complete the etching of each layer,which is also important to ensure the high uniformity,the control layers(nonlaser exposed regions)were prepared at the upper ends of the longitudinal channels.Solvents with different dyes were used to verify that each layer was isolated from the others.The high-quality integration was ensured by quantitatively investigating the experimental conditions in TPP,including the prebaking time(18~40 h),laser power density(2.52~3.36 TW/cm2)and developing time(0.8~4 h),all of which were optimized for each channel formed at different depths.Finally,the eightlayered microfluidic channels integrated with polymer microstructures were successfully fabricated to demonstrate the unique capability of this hybrid technique.
出处 《Microsystems & Nanoengineering》 EI CSCD 2019年第1期504-513,共10页 微系统与纳米工程(英文)
基金 This work was supported by the National Natural Science Foundation of China(Nos.61475149,51675503,51875544,61805230,11801126) the Fundamental Research Funds for the Central Universities(WK2090090012,WK2480000002,WK2090090021,2192017bhzx0003) Youth Innovation Promotion Association CAS(2017495) National Key R&D Program of China(2018YFB1105400) We acknowledge the Experimental Center of Engineering and Material Sciences at USTC for the fabrication and measuring of samples This work was partly performed at the USTC Center for Micro and Nanoscale Research and Fabrication.
  • 相关文献

参考文献2

二级参考文献2

共引文献123

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部