期刊文献+

基于用电数据挖掘的老龄独居家庭辨识

Identification of Elderly Living Alone Families Based on Electricity Consumption Data Mining
下载PDF
导出
摘要 为老龄独居家庭提供特殊供电服务是电业履行社会职能的重要途径。此类家庭传统上由社区查访获知,工作量大、周期长,电业向社区索取也很困难。为此,在分析独居老人用电特征的基础上,提出一种老龄独居家庭辨识方法。通过选用支持向量机为分类器,并调节样本权重最大化约登指数,解决此类家庭作为小样本的识别问题。案例分析表明,所提方法可获得90%以上的准确率和召回率。研究成果有助于电业推行相关供电服务,也有助于提升此类家庭搜索的覆盖度和及时性。 For electricity supply companies(ESCs),it is an important way of performing social functions to provide the elderly living-alone families(ELAFs)with special services.Traditionally,the ELAFs are found by door-to-door survey of community staffs,which has heavy workload and long cycle problems.It’s also difficult for the ESCs to obtain such information from the communities.For this reason,based on the analysis of the electricity consumption characteristics of the elderly living alone,an identification method for the elderly living alone families was proposed.By selecting support vector machine as the classifier and adjusting the sample weight to maximize the Yoden index,the problem of identifying such families as small samples is solved.The case analysis shows that the proposed method can obtain an accuracy and recall rate of more than 90%.The research results will help the electric industry to implement related power supply services,and also help improve the coverage and timeliness of such home searches.
作者 韩跃峻 朱一骅 陆微 应栋子 辛洁晴 Han Yuejun;Zhu Yihua;Lu Wei;Ying Dongzi;Xin Jieqing(State Grid Shanghai Shibei Electricity Supply Company,Shanghai 200072,China;Shanghai Jiao Tong University,Shanghai 200240,China)
出处 《电气自动化》 2021年第4期105-107,共3页 Electrical Automation
基金 国家自然基金资助项目(51777121) 国家电网公司科技项目(52091420001L)。
关键词 泛在物联网 数据挖掘 支持向量机 老龄独居家庭 社区服务 ubiquitous IOT data mining support vector machine elderly living-alone family community services
  • 相关文献

参考文献6

二级参考文献62

  • 1徐君,黄亚楼,李飞.K-Means聚类中序列模式和批量模式的比较研究[J].计算机科学,2004,31(6):156-158. 被引量:5
  • 2李培强,李欣然,陈辉华,唐外文.基于模糊聚类的电力负荷特性的分类与综合[J].中国电机工程学报,2005,25(24):73-78. 被引量:131
  • 3赵国富,曲国庆.聚类分析中CLARA算法的分析与实现[J].山东理工大学学报(自然科学版),2006,20(2):45-48. 被引量:9
  • 4王轶,达新宇.分布式并行数据挖掘计算框架及其算法研究[J].微电子学与计算机,2006,23(9):223-225. 被引量:9
  • 5曾梦好.分类用户峰谷电价研究[D].2006:40.
  • 6Keogh E, Pazzani M. An enhanced representation of time series which allows fast and accurate classification, clustering and relevance feedback[C]//Proceedings of the 3rd International Conference of Knowledge Discovery and Data Mining. New York: the Association for the Advancement ofArtificial lntelligence, 1998: 239-241.
  • 7Armbrust M, Fox A. Above the clouds: a Berkeley view of cloud computing[R]. USA: University of California at Berkeley, 2009.
  • 8Kiyoung K, Kyungho J, Hyuck H, et al. A benchmark for MapReduce framework[C]//14th IEEE International Conference on Parallel and Distributed Systenls, ICPADS '08. Melbourne, Victoria, AUSTRALIA: IEEE Computer Society, 2008: 11-18.
  • 9中国电力大数据发展白皮书(2013)[R].北京:中国电机工程学会,2013.
  • 10FAYYAD U,PIATETSKY-SHAPIRO G,SMYTH P.From data mining to knowledge discovery[M].An overview.AAAI/MIT Press,Cambridge,Mass,1996.

共引文献274

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部