期刊文献+

绿色建筑前期设计阶段的多目标优化及多属性决策模型 被引量:7

Green Building Multi-Objective Optimization and Multi-arbitrate Decision Model in Its Early Design Stage
下载PDF
导出
摘要 综合考虑建筑物的体型参数、围护结构参数和功能布局的影响,运用层次分析法将描述性的功能目标转化为定量值,建立绿色建筑前期设计阶段的能耗、成本和功能的多目标优化模型。针对模型变量的离散性,以邻域拓扑结构改进粒子群算法,防止陷入局部最优,得到绿色建筑方案的Pareto解集。在绿色建筑多属性决策中引入马氏距离与组合赋权方法,对最优方案进行排序决策。通过案例分析验证该模型的效果,在保证一定功能的前提下,可获得较低的能耗和成本,实现绿色建筑设计理念。 After reviewing the influences of the shape parameters,envelope parameters,and functional layouts of abuilding,the Analytic Hierarchy Process is utilized to qualify its descriptive function objective,and a green building multi-objective optimization model(GBMOO)is developed,whose objectives include building energy consumption,cost and function.Considering the discretization of the variables in the model,a particle swarm optimization algorithm is developed to avoid local optimum,improved by the neighborhood topology structure.A Pareto solution set is obtained by it.Mahalanobis distance and combination weights are introduced in the multi-attribute decision-making method to sort the optimal solutions.A case study reveals this model is suitable and shows that the green design can be implemented by this optimization model,keeping lower energy consumption and lower cost while ensuring a certain function.
作者 胡文发 何新华 HU Wen-fa;HE Xin-hua(School of Economics and Management,Tongji University,Shanghai 200092,China;School of Economics and Management,Shanghai Maritime University,Shanghai 201306,China)
出处 《运筹与管理》 CSSCI CSCD 北大核心 2021年第7期44-49,共6页 Operations Research and Management Science
基金 国家自然科学基金面上项目(71971158,71371145,71473162)。
关键词 绿色建筑 方案设计 多目标优化模型 粒子群优化算法 多属性决策 green building conceptual design multi-objective optimization model particle swarm optimization algorithm multi-attribute decision making
  • 相关文献

参考文献1

二级参考文献13

  • 1余雁,梁樑,蒋跃进,杜少甫.一种新的基于模糊偏好的TOPSIS改进方法[J].系统工程,2004,22(8):87-90. 被引量:21
  • 2孙晓东,焦玥,胡劲松.基于灰色关联度和理想解法的决策方法研究[J].中国管理科学,2005,13(4):63-68. 被引量:155
  • 3Fatih Emre Boran, Serkan Genc. A multi-criteria intuitionistic fuzzy group decision making for supplier selection With TOPSIS method[J]. Expert Systems with Applications, 2009, 36(8): 11363-11368.
  • 4Desheng Wu. Supplier selection: A hybrid model using DEA, decision tree and neural network[J]. Expert Systems with Applications, 2009, 36(5): 9105-9112.
  • 5Ozcan Kilincci, Suzan Asll Onal. Fuzzy AHP approach for supplier selection in a washing machine company[J]. Expert ' Systems with Applications, 2011, 38(8): 9656- 9664.
  • 6Hwang C L, Yoon K. Multiple attribute decisionmaking: Methods and applications[M]. New York: Springer-Verlag, 1981: 173-184.
  • 7Agrawal V P, Kohli V, Gupta S. Computer aided robot selection: The multiple attribute decision making approach[J]. Int J of Production Research, 1991, 29(8): 1629-1644.
  • 8Kim G, Park C, Yoon K E Identifying investment opportunities for advanced manufacturing system with comparative-integrated performanc measurement[J]. Int J of Production Economics, 1997, 50(1): 23-33.
  • 9Chert C T. Extension of the TOPSIS for group decision- making under fuzzy environment[J]. Fuzzy Sets and Systems,2000, 14(1): 1-9.
  • 10Abo-Sinna M A, Amer A H. Extensions of TOPSIS for multi-objective large-scale nonlinear programming problems[J]. Applied Mathematics and Computation, 2005, 1(162): 243-256.

共引文献68

同被引文献38

引证文献7

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部