摘要
推荐系统能够有效解决信息过载等问题,得到了国内外众多学者的广泛关注。真实世界中的应用场景往往可以建模成异质信息网络,因此基于异质信息网络表示学习的推荐算法成为了近年来的研究热点。然而,当前的研究工作仍然存在异质信息提取缺乏深度、节点的复杂关系发掘不充分等问题。为解决这些问题,文中提出了基于异质信息网络表示学习与注意力神经网络的推荐算法。首先,提出了保持语义关系与结构拓扑的异质信息网络表示方法;然后,设计了基于元路径的随机游走策略来获取异质信息网络中的节点序列,对序列过滤并生成用户和项目在不同元路径下的表示向量;最后,设计了基于注意力神经网络的推荐算法,将上述向量输入注意力神经网络,深入挖掘表示向量之间的关系以实现有效的推荐。在两个真实数据集上进行实验并与3种主流的算法进行比较,结果表明,所提算法在MAE与RMSE这2个推荐指标方面都有提升,最高提升了8.9%。
Recommendation system,as a very effective technique to solve the information overload,has received a great deal of attention from researchers.However,the real application of recommending systems can be modeled as heterogeneous networks with multi-typed nodes and relations.Thus,heterogeneous network embedding based recommendation becomes a very hot research topic in recent years.However,most of the existing studies do not fully explore the auxiliary information and complex relations which are valuable for enhancing recommending performance.To address the above problems,a recommendation algorithm based on heterogeneous information network embedding and attention neural network is proposed.First,this paper proposes a heterogeneous information network embedding method that maintains semantic relationship and topological structure simultaneously.Then,it designs a meta-path based random walk strategy to extract node sequences from heterogeneous information networks.All the sequences are filtered and then employed to learn the embeddings for each user and item in different meta-paths.At last,this paper presents a recommendation algorithm based on attention neural network with the above embeddings as input.The attention network composed of attention layers and hidden layers is able to explore the complex relationships and hence enhance the performance of recommendation.To verify the effectiveness of the proposed method,this paper conducts experiments on two kinds of real-world datasets and makes a comparison with three competitive algorithms.The results show that the proposed algorithm improves the recommending performance in terms of MAE and RMSE,with a maximum increase of 8.9%.
作者
赵金龙
赵中英
ZHAO Jin-long;ZHAO Zhong-ying(School of Computer Science and Engineering,Shandong University of Science and Technology,Qingdao,Shandong 266590,China)
出处
《计算机科学》
CSCD
北大核心
2021年第8期72-79,共8页
Computer Science
基金
国家自然科学基金(62072288,61702306)
山东省自然科学基金(ZR2018BF013)。
关键词
异质信息网络
表示学习
元路径
注意力神经网络
推荐算法
Heterogeneous information networks
Representation learning
Meta-path
Attention neural network
Recommendation algorithm