摘要
内层芯板的涨缩直接影响高多层印制板的质量,文章采用机器学习的方法预测印制板照相底版补偿系数,通过算法设计、特征工程、数据建模,得到了照相底版补偿系数预测模型,编写了照相底版补偿系数预测软件。
The expansion and contraction of inner core board directly affects the quality of high multilayer PCB.This paper uses machine learning method to predict the expansion and contraction coefficient of PCB artwork.Through algorithm design,feature engineering and data modeling,the expansion and contraction coefficient prediction model and seasonal expansion and contraction correction model are obtained,and the artwork expansion and contraction coefficient prediction software is compiled and deployed.
作者
周可杰
吴丰顺
杨卓坪
周龙早
高团芬
Zhou Kejie;Wu Fengshun;Yang Zhuoping;Zhou Longzao;Gao Tuanfen(State Key Laboratory of Materials Processing and Die&Mould Technology,School of Materials Science and Engineering,Huazhong University of Science and Technology,Wuhan 430074,China;Huayuhuayuan Electronics Co.,Ltd,Shenzhen 518118,China)
出处
《印制电路信息》
2021年第7期21-27,共7页
Printed Circuit Information
关键词
多层印制板
层压
照相底版涨缩
机器学习
补偿系数
Multi-Layer PCB
Lamination
Artwork Shrinking
Machine Learning
Coefficient of Compensation