期刊文献+

基于机器学习的印制电路板照相底版补偿系数预测

Prediction of shrinkage coefficient of PCB artwork on machine learning
下载PDF
导出
摘要 内层芯板的涨缩直接影响高多层印制板的质量,文章采用机器学习的方法预测印制板照相底版补偿系数,通过算法设计、特征工程、数据建模,得到了照相底版补偿系数预测模型,编写了照相底版补偿系数预测软件。 The expansion and contraction of inner core board directly affects the quality of high multilayer PCB.This paper uses machine learning method to predict the expansion and contraction coefficient of PCB artwork.Through algorithm design,feature engineering and data modeling,the expansion and contraction coefficient prediction model and seasonal expansion and contraction correction model are obtained,and the artwork expansion and contraction coefficient prediction software is compiled and deployed.
作者 周可杰 吴丰顺 杨卓坪 周龙早 高团芬 Zhou Kejie;Wu Fengshun;Yang Zhuoping;Zhou Longzao;Gao Tuanfen(State Key Laboratory of Materials Processing and Die&Mould Technology,School of Materials Science and Engineering,Huazhong University of Science and Technology,Wuhan 430074,China;Huayuhuayuan Electronics Co.,Ltd,Shenzhen 518118,China)
出处 《印制电路信息》 2021年第7期21-27,共7页 Printed Circuit Information
关键词 多层印制板 层压 照相底版涨缩 机器学习 补偿系数 Multi-Layer PCB Lamination Artwork Shrinking Machine Learning Coefficient of Compensation
  • 相关文献

参考文献5

二级参考文献10

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部