摘要
通常一个销售代表会有数百名客户。销售代表无法定量预测哪位客户最近有下单需求,所以多采用轮询或者主观直觉的方式决定每天的回访客户名单。本文以深度学习的思路,把销售代表的历史回访记录作为输入数据,以卷积神经网络(CNN)和循环神经网络(RNN)为基础模型,让模型学习客户复购行为的内在逻辑以便指导初级销售代表的每日回访工作。相对传统回访策略,在深度学习算法辅助下的回访策略可以把回访相对成功率提高120%,取得了显著的效果。
Each sales representative usually has hundreds of customers.Sales representatives cannot quantitatively predict which customer will place an order recently,so they often use polling or intuitive methods to decide the list of visiting customers every day.This paper takes the historical visit records of sales representatives as input data,and uses convolutional neural network(CNN)and recurrent neural network(RNN)to make the model learn the internal logic of customer repurchase behavior,in order to guide the daily jobs of junior sales representatives’jobs.Compared with the traditional visit strategy,the new visit strategy of deep learning has achieved good results and increases the relative success rate of visit by about 120%.
作者
施海昕
诸建超
严骏驰
程栋
刘云锋
Shi Haixin;Zhu Jianchao;Yan Junchi;Cheng Dong;Liu Yunfeng(ICkey(Shanghai)Internet and Technology Co.Ltd.,Shanghai 201612;School of Computer Science and Software Engineering,East China Normal University,Shanghai 200062;School of Electronic Information and Electrical Engineering,Shanghai Jiao Tong University,Shanghai 200240)
出处
《高技术通讯》
CAS
2021年第7期713-722,共10页
Chinese High Technology Letters
基金
科技创新2030“新一代人工智能”重大项目(2018AAA0100704)
国家自然科学基金面上项目(61972250)资助