期刊文献+

Graphene/Semiconductor Heterostructure Wireless Energy Harvester through Hot Electron Excitation 被引量:2

原文传递
导出
摘要 Recharging the batteries by wireless energy facilitates the long-term running of the batteries,which will save numerous works of battery maintenance and replacement.Thus,harvesting energy form radio frequency(RF)waves has become the most promising solution for providing the micropower needed for wireless sensor applications,especially in a widely distributed 4G/5G wireless network.However,the current research on rectenna is mainly focused on the integrated antenna coupled with metal-insulator-metal tunneling diodes.Herein,by adopting the plasmon excitation of graphene and quantum tunneling process between graphene and GaAs or GaN,we demonstrated the feasibility of harvesting energy from the 915MHz wireless source belonging to 5G in the FR1 range(450MHz-6 GHz)which is also known as sub-6G.The generated current and voltage can be observed continuously,with the direction defined by the built-in field between graphene and GaAs and the incident electromagnetic waves treated as the quantum energy source.Under the RF illumination,the generated current increases rapidly and the value can reach in the order of 10^(-8)-10^(-7)A.The harvester can work under the multiple channel mode,harvesting energy simultaneously from different flows of wireless energy in the air.This research will open a new avenue for wireless harvesting by using the ultrafast process of quantum tunneling and unique physical properties of graphene.
出处 《Research》 EI CAS 2020年第1期603-610,共8页 研究(英文)
基金 The authors thank the support from the National Natural Science Foundation of China(Nos.51202216,51502264,and 61774135) the Special Foundation of Young Professor of Zhejiang University(Grant No.2013QNA5007).
  • 相关文献

参考文献1

二级参考文献127

  • 1S. A. Maier, Plasmonics: Fundamentals and Applications New York: Springer, 2007.
  • 2M. L. Brongersma, Introductory lecture: Nanoplasmonics Faraday Discuss. 178, 9 (2015).
  • 3J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, Plasmonics for extreme light concen- tration and manipulation, Nat. Mater. 9(3), 193 (2010).
  • 4Editorial, Focusing in on applications, Nature Nanotechnol. 10, 1 (2015).
  • 5A. Baev, P. N. Prasad, H. /gren, M. Samod, and M. We- gener, Metaphotonics: An emerging field with opportunities and challenges, Phys. Rep. 594, 1 (2015).
  • 6D. K. Gramotnev and S. I. Bozhevolnyi, Plasmonics beyond the diffraction limit, Nat. Photonics 4(2), 83 (2010).
  • 7D. K. Gramotnev and S. I. Bozhevolnyi, Nanofocusing of electromagnetic radiation, Nat. Photonies 8, 13 (2014).
  • 8S. Xiao and N. A. Mortensen, Surface-plasmon-polariton- induced suppressed transmission through ultrathin metal disk arrays, Opt. Lett. 36(1), 37 (2011).
  • 9S. Xiao, J. Zhang, L. Peng, C. Jeppesen, R. Malureanu, A. Kristensen, and N. A. Mortensen, Nearly zero transmission through periodically modulated ultrathin metal films, Appl. Phys. Left. 97(7), 071116 (2010).
  • 10C. L. C. Smith, N. Stenger, A. Kristensen, N. A. Mortensen, and S. I. Bozhevolnyi, Gap and channeled plasmons in ta- pered grooves: A review, Nanoscale 7(21), 9355 (2015).

共引文献1

同被引文献16

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部