期刊文献+

Sharkskin-Inspired Magnetoactive Reconfigurable Acoustic Metamaterials 被引量:2

原文传递
导出
摘要 Most of the existing acoustic metamaterials rely on architected structures with fixed configurations,and thus,their properties cannot be modulated once the structures are fabricated.Emerging active acoustic metamaterials highlight a promising opportunity to on-demand switch property states;however,they typically require tethered loads,such as mechanical compression or pneumatic actuation.Using untethered physical stimuli to actively switch property states of acoustic metamaterials remains largely unexplored.Here,inspired by the sharkskin denticles,we present a class of active acoustic metamaterials whose configurations can be on-demand switched via untethered magnetic fields,thus enabling active switching of acoustic transmission,wave guiding,logic operation,and reciprocity.The key mechanism relies on magnetically deformable Mie resonator pillar(MRP)arrays that can be tuned between vertical and bent states corresponding to the acoustic forbidding and conducting,respectively.The MRPs are made of a magnetoactive elastomer and feature wavy air channels to enable an artificial Mie resonance within a designed frequency regime.The Mie resonance induces an acoustic bandgap,which is closed when pillars are selectively bent by a sufficiently large magnetic field.These magnetoactive MRPs are further harnessed to design stimuli-controlled reconfigurable acoustic switches,logic gates,and diodes.Capable of creating the first generation of untethered-stimuli-induced active acoustic metadevices,the present paradigm may find broad engineering applications,ranging from noise control and audio modulation to sonic camouflage.
出处 《Research》 EI CAS 2020年第1期799-811,共13页 研究(英文)
基金 Q.W.acknowledges the funding support from the Air Force Office of Scientific Research Young Investigator Program(FA9550-18-1-0192,program manager:Dr.Ming-Jen Pan) the National Science Foundation(CMMI-1762567).
  • 相关文献

参考文献2

二级参考文献13

  • 1Pendry J B, Schurig D and Smith D R 2006 Science 312 1780
  • 2Cummer S A and Schurig D 2007 New J. Phys. 9 45
  • 3Cai L-W and Sanchez-Dehesa J 2007 New J. Phys. 9 450
  • 4Chen H and Chan C T 2007 Appl. Phys. Lett. 91 183518
  • 5Cummer S A, Popa B-I, Schurig D, Smith D R, Pendry J, Rahm M and Starr A 2008 Phys. Rev. Lett. 100 024301
  • 6Cheng Y, Yang F, Xu J Y and Liu X J 2008 Appl. Phys. Lett. 92 151913
  • 7Torrent D and Sanchez-Dehesa J 2008 New J. Phys. 10 063015
  • 8Milton G W 2007 New J. Phys. 9 359
  • 9Ruan Z, Yan M, Neff C W and Qiu M 2007 Phys. Rev. Lett. 99 113903
  • 10Rhee H and Park Y 1997 J. Acoust. Soc. Am. 102 3401

共引文献1

同被引文献22

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部