期刊文献+

Probability-Density-Based Deep Learning Paradigm for the Fuzzy Design of Functional Metastructures 被引量:2

原文传递
导出
摘要 In quantum mechanics,a norm-squared wave function can be interpreted as the probability density that describes the likelihood of a particle to be measured in a given position or momentum.This statistical property is at the core of the fuzzy structure of microcosmos.Recently,hybrid neural structures raised intense attention,resulting in various intelligent systems with farreaching influence.Here,we propose a probability-density-based deep learning paradigm for the fuzzy design of functional metastructures.In contrast to other inverse design methods,our probability-density-based neural network can efficiently evaluate and accurately capture all plausible metastructures in a high-dimensional parameter space.Local maxima in probability density distribution correspond to the most likely candidates to meet the desired performances.We verify this universally adaptive approach in but not limited to acoustics by designing multiple metastructures for each targeted transmission spectrum,with experiments unequivocally demonstrating the effectiveness and generalization of the inverse design.
出处 《Research》 EI CAS 2020年第1期1637-1647,共11页 研究(英文)
基金 This work is financially supported by the National Natural Science Foundation of China(Grant Nos.11674119,11704284,11774297,11690030,and 11690032) J.Z.acknowledges the financial support from the General Research Fund of Hong Kong Research Grants Council(Grant No.15205219) Y.G.P.and A.A.acknowledge the support of the National Science Foundation and the Simons Foundation.X.-F.Z.acknowledges the Bird Nest Plan of HUST.
  • 相关文献

同被引文献14

引证文献2

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部