期刊文献+

一种解决群进化算法参数设置问题的最优向量法

An Optimal Vector Method for Parameter Setting of Swarm Evolution Algorithm
下载PDF
导出
摘要 群进化算法是智能计算领域研究的核心内容,而算法中数值型参数的设置是影响算法搜索效率的重要因素,因此设计解决参数设置问题的方法也是群进化算法研究的重要内容。目前解决参数设置问题的常规统计方法是根据算法搜索的部分结果组成有限样本数据,依据统计最好值个数大小的判定结果来确定最优参数预设值。常规统计方法在有些测试样本数据中很难确定唯一的最优参数预设值。为了解决常规统计方法的缺点,提出了一种最优向量法,该方法可以将任意形式有限样本数据转换为向量,依据向量计算的判定规则进行最优参数预设值的确定。实验结果表明,依据获取的有限样本数据通过最优向量法找到最优参数值,采用该参数值的群进化算法搜索效率相对最优,从而验证了最优向量法的有效性。 The swarm evolution algorithm is the core content of intelligent computing research,and the setting of numerical parameters in the algorithm is an important factor affecting the search efficiency of the algorithm.Therefore,the design of the method to solve the problem of parameter setting is also an important content of swarm evolution algorithm research.To solve the problem of parameter setting,the conventional statistical method is to form limited sample data according to some results of algorithm search,and determine the optimal parameter preset value according to the judgment result of the number of the best value.It is difficult for conventional statistical methods to determine the unique optimal parameter preset value in some test sample data.In order to solve the shortcomings of conventional statistical methods,an optimal vector method was proposed.In this method,the arbitrary finite sample data was converted into vectors,and the optimal parameters were accurately determined according to the decision rules of vector calculation.The experimental results show that the search efficiency of the swarm evolution algorithm is relatively optimal,Using the optimal parameter values found by the optimal vector method,which is based on the obtained finite sample data;thus the effectiveness of the optimal vector method is verified.
作者 张志强 王伟钧 施达 ZHANG Zhi-qiang;WANG Wei-jun;SHI Da(Key Laboratory of Pattern Recognition and Intelligent Information Processing, Institutions of Higher Education of Sichuan Province, Chengdu University, Chengdu 610106, China;College of Computer Science, Chengdu University, Chengdu 610106, China)
出处 《科学技术与工程》 北大核心 2021年第18期7611-7621,共11页 Science Technology and Engineering
基金 四川省科技厅应用基础研究项目(2018JY0320) 成都市教育局教育科研项目(CY2020ZG05)。
关键词 群进化算法 参数设置 有限样本数据 向量 最优向量法 swarm evolutionary algorithm parameter setting finite sample data vector optimal vector method
  • 相关文献

参考文献2

二级参考文献34

  • 1Rheault M, Drolet J R, Abdulnour G. Dynamic cellular manufacturing system (DCMS). Computers and Industrial Engineering, 1996, 31(1-2): 143-146.
  • 2Garza O, Smunt T L. Countering the negative impact of intercell flow in cellular manufacturing. Journal of Operations Management, 1991, 10(1): 92-118.
  • 3Khaksar-Haghani F, Kia R, Mahdavi I, Kazemi M. A genetic algorithm for solving a multi-floor layout design model of a cellular manufactur-ing system with alternative process routings and flexible configuration. The International Journal of Advanced Manufacturing Technology, 2013, 66(5-8): 845-865.
  • 4Kia R, Baboli A, Javadian N, Tavakkoli-Moghaddam R, Kazemi M, Khorrami J. Solving a group layout design model of a dynamic cellular manufacturing system with alternative process routings, lot splitting and flexible reconfiguration by simulated annealing. Computers and Operations Research, 2012, 39(11): 2642-2658.
  • 5Gupta J N D, Schaller J E. Minimizing flow time in a flow-line manufacturing cell with family setup times. Journal of the Operational Research Society, 2006, 57(2): 163-176.
  • 6Tsai C H, Li R K. A due-date oriented scheduling heuristic for job shop cellular manufacturing system. International Journal of Industrial Engineering —— Theory Applications and Practice, 2000, 7(1): 76-88.
  • 7Solimanpur M, Elmi A. A tabu search approach for cell scheduling problem with makespan criterion. International Journal of Production Economics, 2013, 141(2): 639-645.
  • 8Golmohammadi A, Ghodsi R. Applying an integer Electromagnetism-like algorithm to solve the cellular manufacturing scheduling problem with an integrated approach. In: Proceedings of the 2009 International Conference on Computers and Industrial Engineering. Troyes: IEEE, 2009. 34-39.
  • 9Mosbah A B, Dao T M. Optimimization of group scheduling using simulation with the meta-heuristic extended great deluge (EGD) approach. In: Proceedings of the 2010 IEEE International Conference on Industrial Engineering and Engineering Management. Macao: IEEE, 2010. 275-280.
  • 10Gholipour K Y, TavakkoliM R, Khorrami A. Solving a multicriteria group scheduling problem for a cellular manufacturing system by scatter search. Journal of the Chinese Institute of Industrial Engineers, 2011, 28(3): 192-205.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部