摘要
研究非线性Choquard方程:-Δu+u=(Iα*F(u))f(u),x∈N,其中N≥3,α∈(0,N),F是f的原函数,Iα是Riesz位势,利用一般极小极大原理,得到了一个正基态解,其中非线性项f仅满足一般条件且认为几乎是最优的.将以前有关的非线性项呈次临界增长的Choquard方程的结果推广到了非线性项呈临界增长的Choquard方程上.
The following nonlinear Choquard equation was studied:-Δu+u=(Iα*F(u))f(u),x∈N,where N≥3,α∈(0,N),F is the primitive function of f,Iαis the Riesz potential.By using the general minimax arguments,a positive ground state solution is obtained,in which the nonlinear term f only satisfies the general condition and is considered to be almost optimal.The results of the previously related Choquard equation with subcritical growth of nonlinear term are generalized to the Choquard equation with critical growth of nonlinear term.
作者
何毅
刘彩红
彭超权
HE Yi;LIU Caihong;PENG Chaoquan(College of Mathematics and Statistics, South-Central University for Nationalities, Wuhan 430074, China)
出处
《中南民族大学学报(自然科学版)》
CAS
北大核心
2021年第4期434-440,共7页
Journal of South-Central University for Nationalities:Natural Science Edition
基金
国家自然科学基金资助项目(11601530)。