期刊文献+

基于演化合成神经网络的光通信MIMO检测算法

MIMO DETECTION ALGORITHM OF OPTICAL COMMUNICATION BASED ON EVOLUTIONARY SYNTHESIS NEURAL NETWORK
下载PDF
导出
摘要 针对光通信系统中多模式传输所引起的非线性耦合问题,提出一种基于演化合成神经网络的光通信多输入多输出(Multiple Input Multiple Output, MIMO)检测算法。给出光通信系统MIMO的深度神经网络模型,利用深度神经网络强大的非线性学习能力解决多模光通信的非线性耦合问题。采用演化合成技术训练全连接神经网络,以光通信MIMO的特点作为演化合成的环境因子,逐渐缩小神经网络的规模,提高神经网络的结构效率。基于真实光通信系统的仿真实验结果显示,该算法提高了神经网络的效率,并且实现了较好的光通信MIMO检测效果。 Aiming at the problem of the nonlinear coupling caused by the multiple modes transmission in optical communication system,we propose a multiple input multiple output(MIMO)detection algorithm of optical communication based on evolutionary synthesis neural network.The deep neural network model of optical communication system MIMO was giveh,and we took advantage of strong nonlinear fitting ability of deep neural network to solve the nonlinear coupling problem of multiple mode optical communication.We adopted evolutionary synthesis technique to train the full connected neural network,and set the attributes of optical communication MIMO as the environment factors of evolutionary synthesis.It helped to reduce the size of neural network and improve the structure efficiency of neural network.The simulation experimental results based on real optical communication system show that the proposed algorithm improves the efficiency of neural network,and it also realizes ideal effect for optical communication MIMO detection.
作者 杨恺 陈晓宁 Yang Kai;Chen Xiaoning(School of Electronic and Electrical Engineering,Dongguan Polytechnic,Dongguan 523808,Guangdong,China;School of Electronics and Informaiton,Northwestern Polytechnical University,Xi’an 710072,Shaanxi,China)
出处 《计算机应用与软件》 北大核心 2021年第8期144-149,174,共7页 Computer Applications and Software
基金 国家重点研发计划项目“人机物融合的云计算架构与平台”(2018YFB1004800)。
关键词 光通信系统 多输入多输出通信 深度神经网络 深度学习 演化合成 模式耦合 Optical communication system Multiple input multiple output communication Deep neural network Deep learning Evolutionary synthesis Modes coupling
  • 相关文献

参考文献9

二级参考文献71

  • 1金伟其,刘广荣,王霞,王志宏,孙海春,丁玲青.微光像增强器的进展及分代方法[J].光学技术,2004,30(4):460-463. 被引量:18
  • 2陈自宽,张延,母国光.用强度系列成象法获取或显示高动态范围图象[J].数据采集与处理,1994,9(4):247-251. 被引量:1
  • 3金伟其,刘广荣,白廷柱,王霞.夜视领域几个热点技术的进展及分析[J].光学技术,2005,31(3):405-409. 被引量:14
  • 4G J Foschini, M J Gans. On limits of wireless communications in a fading environment when using multiple antennas [J ]. Wireless Pers. Commun, 1998,6(3) :311 - 335.
  • 5E T Telatar. Capacity of multi-antenna Gaussian channels[ J]. European Trans. Telecom, 1999,10(6 ) :585 - 595.
  • 6R van Nee,R Pmsad. OFDM for Wireless Multimedia Communications (F'wst edition ) [ M ]. Boston, MA: Artech House, 2000.
  • 7Falconer D, Ariyavisitakul S L, Benyamin-Seeyar A, et al. Frequency domain equalization for single-carrier broadband wireless systems[J]. IEEE Commun. Mag., 2002,40(4) :58 - 66.
  • 8J Coon,J Siew,M Beach, et al.A comparison of MIMO-OFDM and MIMO-SCFDE in WLAN environments [A ]. In Prec. Global Telecommunications Conf. [C ]. San Francisco: IEEE, 2003.3296 - 3301.
  • 9Justin Coon, Simon Armour, Mark Beach, et al. Adaptive frequency-domain equalization for single-carder multiple-input multiple-output wireless transmissions[J]. IEEE Transactions on Signal Processing, 2005,53 ( 8 ) : 3247 - 3256.
  • 10Deneire L, Gyselinckx B, Engels M. Training sequence versus cyclic prefix-a new look on single cartier communication[ J]. IEEE Communication Letters,2001,5(7) :292 - 294.

共引文献137

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部