期刊文献+

基于多特征融合的动态手势识别 被引量:5

DYNAMIC GESTURE RECOGNITION BASED ON MULTI-FEATURE FUSION
下载PDF
导出
摘要 针对目前动态手势识别计算复杂度较高以及对实验器材有相应要求的问题,提出基于多特征融合的动态手势识别。使用OpenPose得到手部关键点信息,建立手势模型,将坐标信息利用手部的结构关系进行处理,得到手部的角度和长度特征。将角度特征序列和长度特征序列进行融合,利用阈值设定过滤序列中的奇异点,使用FastDTW算法计算待测动态手势与手势模板库中的序列距离,得到预测手势动作类别。实验表明,该方法计算复杂度较低,识别速度快,选取的四种手势动作的识别准确率均在90%以上,有较好的识别效果。 In view of the high computational complexity of dynamic gesture recognition and the high requirements for experimental equipment,this paper proposes dynamic gesture recognition based on multi-feature fusion.It used OpenPose to obtain key information of hand,established gesture model,and used coordinate information.The structural relationship of the part was processed to obtain the angle and length characteristics of the hand.The angle feature sequence and the length feature sequence were fused,the threshold was used to set the singular point in the filter sequence,and the FastDTW algorithm was used to calculate the sequence distance between the dynamic gesture to be tested and the gesture template library,and the predicted gesture action category was obtained.Experiments show that the computational complexity of this method is low and the speed is fast.The recognition accuracy of the four gestures selected in this paper is above 90%,which has a good recognition effect.
作者 李东东 张立民 邓向阳 姜杰 Li Dongdong;Zhang Limin;Deng Xiangyang;Jiang Jie(Naval Aviation University,Yantai 264000,Shandong,China)
机构地区 海军航空大学
出处 《计算机应用与软件》 北大核心 2021年第8期214-219,共6页 Computer Applications and Software
关键词 动态手势识别 动态时间规整 手势模板库 Dynamic gesture recognition Dynamic time warping Gesture template library
  • 相关文献

参考文献3

二级参考文献33

  • 1余力,石爱国,肖冰,代亮,杨波.舰载直升机起降训练仿真系统设计方案[J].船舶,2006,17(6):52-56. 被引量:2
  • 2ZHANG Jianjie, LIN Hao, ZHAO Minggun. A fast al- gorinm for hand gesture rcongnition uing relief [ C 1// Proc. of the 6th International Conterence on Fuzzy System and Knowledge Discovery. [ s. n. ] ,2009:8-12.
  • 3KAO M C,LI H S. Design and implementation of interac- tion system between humanoid robot and human hand ges- ture I C]//Proe. of SICE Annual Conference. Taiwan: IEEE Press ,2010 : 1616-1621.
  • 4BAUER B, KRAISS K F. Towards an automatic sign lan- guage recognition system using subunits [ C ]// Proceed- ing of the International Gesture Workshop. Heidelberg, Berlin, Germany: Springer, 2001 : 64-75.
  • 5ZHANG Shilin, ZHANG Bo. Using HMM to sign langua- ger video retrieval [ C ]//Proc. of the 2ed Intermational Conference on Computational Interligence and Natural Co- puting. Wuhan: [ s. n. ] ,2010:55-59.
  • 6SILANON K,SUVONVORN N. Hand motion analysis for Thai alphabet recognition using HMM [ J ]. International Jourmal of Information and Electronics Engineering, 2011,1 ( 1 ) :65-71.
  • 7LEYVAND T, MEEKHOF C, WEI Y C, etal. Kinect i- dentity: technology and experience[ J]. Computer, 2011,.44 ( 4 ): 94-96.
  • 8IKEMURA S, FUJIYOSHI H. Real-time human detection using relational depth similarity simi-larity features [ C ]// Proc. of the 10th Asian Coference on Computer Vison. Queenstown, New Zealand: [ s. n. ] ,2011:25-38.
  • 9EYES R M, DOMINGUEZ G , ESCALERA. Feature weighting in dynamic time warping for gesture recognition in depth data [ C ]//In Computer Vision Workshops ( IC- CV workshops). [S. 1. ] :IEEE Press ,2011:1182-1188.
  • 10ABID H , HARUNUR R. User independent hand gesture recognition by accelerated DTW [ C ]//Informatics Elec- tronics & Vision (ICIEV), 2012 International Confer- ence. Yantai, China :2012 : 1033-1037.

共引文献45

同被引文献47

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部