期刊文献+

Kernel Least Mean Kurtosis Based Online Chaotic Time Series Prediction

下载PDF
导出
摘要 Based on the kernel methods and the nonlinear feature of chaotic time series,we develop a new algorithm called kernel least mean kurtosis(KLMK)by applying the kernel trick to the least mean kurtosis(LMK)algorithm,which maps the input data to a high dimensional feature space.The KLMK algorithm can overcome the shortcomings of the original LMK for nonlinear time series prediction,and it is easy to implement a sample by sample adaptation procedure.Theoretical analysis suggests that the KLMK algorithm may converge in a mean square sense in nonlinear chaotic time series prediction under certain conditions.Simulation results show that the performance of KLMK is better than those of LMK and the kernel least mean square(KLMS)algorithm.
作者 QU Hua MA Wen-Tao ZHAO Ji-Hong CHEN Ba-Dong 曲桦;马文涛;赵季红;陈霸东(School of Electronic and Information Engineering,Xi'an Jiaotong University,Xi'an 710049;School of Telecommunication and Information Engineering,Xi'an University of Posts and Telecommunications,Xi'an 710121;Institute of Artificial Intelligence and Robotics,Xi'an Jiaotong University,Xi'an 710049)
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2013年第11期44-48,共5页 中国物理快报(英文版)
基金 Supported by the National Natural Science Foundation of China(61371807,61372152) the Key Project of Major Na-tional Science and Technology on New Generation of Broadband Wireless Mobile Communication Network(2012ZX03001023-003,2012ZX03001008-003,2013ZX03002010-003).
关键词 CONDITIONS SPACE KERNEL
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部