摘要
原子间相互作用建模是分子动力学模拟的核心问题之一.基于第一性原理的建模准而不快,经验势模型快而不准.因此人们长期面临精度和效率只得其一的两难困境.基于机器学习的原子间相互作用建模在达到第一性原理精度的同时,计算开销大大降低,因而有希望解决这两难困境.本文将介绍构造基于机器学习的原子间相互作用模型的一般框架,归纳近年来的主要建模工作,并探讨这些工作的优势和劣势.
Modeling the interatomic potential is one of the crucial problems in the field of molecular simulation.For a long time,the community faces the dilemma that the first-principles calculations are accurate but slow,while the empirical force fields are efficient but inaccurate.Machine learning is a promising approach to solve the dilemma because it achieves comparable accuracy with the first-principles calculations at a much lower expense.In this review,we present a general framework for developing the machine learning interatomic potentials,provide an incomplete list of recent work in this direction,and investigate the advantages and disadvantages of the reviewed approaches.
作者
王涵
Wang Han(Laboratory of Computational Physics,Institute of Applied Physics and Computational Mathematics,Fenghao East Road 2,Beijing 100094,China;HEDPS,CAPT,Peking University,Beijing 100871,China)
出处
《计算数学》
CSCD
北大核心
2021年第3期261-278,共18页
Mathematica Numerica Sinica
基金
国家自然科学基金(11871110)资助。