期刊文献+

凸约束伪单调方程组的无导数投影算法 被引量:2

A DERIVATIVE-FREE PROJECTION ALGORITHM FOR SOLVING PSEUDO-MONOTONE EQUATIONS WITH CONVEX CONSTRAINTS
原文传递
导出
摘要 基于HS共轭梯度法的结构,本文在弱假设条件下建立了一种求解凸约束伪单调方程组问题的迭代投影算法.该算法不需要利用方程组的任何梯度或Jacobian矩阵信息,因此它适合求解大规模问题.算法在每一次迭代中都能产生充分下降方向,且不依赖于任何线搜索条件.特别是,我们在不需要假设方程组满足Lipschitz条件下建立了算法的全局收敛性和R-线收敛速度.数值结果表明,该算法对于给定的大规模方程组问题是稳定和有效的. Based on the structure of the HS conjugate gradient method,we propose an iterative projection algorithm for solving nonlinear pseudo-monotone equations with convex constraints under one weak assumption.Since the proposed method does not need any gradient or Jacobian matrix information of equations,it is suitable to solve large-scale problems.The proposed algorithm generates a sufficient descent direction in per-iteration,which is independent of any line search.Moreover,the global convergence and R-linear convergence rate of the proposed method are proved without the assuniption that nonlinear equations satisfies Lipschitz condition.The numerical results show that the proposed method is stable and effective for the given large-scale nonlinear equations with convex constraints.
作者 刘金魁 孙悦 赵永祥 Liu Jinkui;Sun Yue;Zhao Yongxiang(School of Mathematics and Statistics,Chongqing Three Gorges University,Wanzhou 404100,China)
出处 《计算数学》 CSCD 北大核心 2021年第3期388-400,共13页 Mathematica Numerica Sinica
基金 重庆市教育委员会科学技术研究计划青年项目(KJQN202001201) 重庆三峡学院重大培育项目(16PY12) 重庆市高等学校重点实验室((2017)3)资助。
关键词 非线性方程组 无导数投影法 共轭梯度法 全局收敛 R-线收敛速度 Nonlinear equations Derivative-free projection method Conjugate gradi-ent method Global convergence R-linear convergence rate
  • 相关文献

参考文献1

二级参考文献13

  • 1Meintjes K and Morgan A P. A methodology for solving chemical equilibrium systems[J]. Applied Mathematics and Computation, 1987, 22: 333-361.
  • 2Dirkse S P and Ferris M C. MCPLIB: A collection of nonlinear mixed complementarity problem- s[J]. Optimization Methods and Software, 1995, 5: 319-345.
  • 3Dennis J E and More J J. A characterization of superlinear convergence and its application to quasi-Newton methods[J]. Mathematics of Computation, 1974, 28: 549-560.
  • 4Zhao Y B and Li D. Monotonicity of fixed point and normal mapping associated with variational inequality and its application[J]. SIAM Journal on Optimization, 2001, 4: 962-973.
  • 5Barizilai J M and Borwein M. Two point step size gradient methods[J]. IMA Journal on Numerical Analysis, 1988, 8: 141-148.
  • 6La Cruz W and Raydan M. Nonmonotone spectral methods for large-scale nonlinear systems[J]. Optimization Methods and Software, 2003, 18: 583-599.
  • 7La Cruz W, Martinez J M and Raydan M. Spectral residual method without gradient information for solving large-scale nonlinear systems of equations[J]. Mathematics of Computation, 2006, 75: 1429-1448.
  • 8Solodov M V and Svaiter B F. A globally convergent inexact Newton method for systems of mono- tone equations, In: Fukushima, M., Qi,L.(eds.)R eformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, pp.355-369.
  • 9Kluwer Academic, 1998. Zhang L and Zhou W. Spectral gradient projection method for solving nonlinear monotone equa- tions[J]. Journal of Computation and Applied Mathematics, 2006, 196: 478-484.
  • 10Cheng W Y. A PRP type method for systems of monotone equations[J]. Mathematical and Com- puter Modelling, 2009, 50: 15-20.

共引文献3

同被引文献3

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部