期刊文献+

基于BP神经网络WIFI辅助IMU室内联合定位 被引量:3

Indoor Joint Positioning of IMU Based on BP Neural Network WIFI
下载PDF
导出
摘要 为了解决WIFI指纹定位技术受到环境干扰大以及PDR(Pedestrian Dead Reckoning)导航定位技术存在累积误差的问题,提出基于BP神经网络的WIFI辅助IMU(Inertial Measurement Unit)室内联合定位系统。模型先设定一个校正周期,再使用基于BP神经网络的WIFI指纹定位算法周期性纠正改进PDR导航定位算法的定位结果,并更新PDR导航定位算法的初始位置坐标,进而削弱因长时间定位而产生的累积误差。通过仿真结果分析,可以看出定位精度有了明显提高,证明了本文所提方案的有效性。 In order to solve the problem that WIFI fingerprint positioning technology suffering from environmental interference and the cumulative error of PDR(Pedestrian Dead Reckoning) navigation and positioning technology, the paper proposes a WIFI-assisted IMU(Inertial Measurement Unit) indoor joint positioning system based on BP neural network. The model first sets a correction period, and then uses the WIFI fingerprint location algorithm based on BP neural network to periodically correct the positioning result of the improved PDR navigation and positioning algorithm, and update the initial position coordinates of the PDR navigation and positioning algorithm, thereby weakening the cumulative error due to long-term positioning. The simulation experiment and the result analysis show that the positioning accuracy has been significantly improved, which proves the effectiveness of the proposed scheme.
作者 李彪 袁国良 朱若琪 谢奎 LI Biao;YUAN Guo-liang;ZHU Ruo-qi;XIE Kui(College of Information Engineering,Shanghai Maritime University,Shanghai 201306,China)
出处 《计算机仿真》 北大核心 2021年第7期442-446,共5页 Computer Simulation
关键词 室内定位系统 无线局域网指纹库 反向传播神经网络 惯性传感器 导航定位算法 Indoor positioning system WIFI fingerprint library BP neural network Inertial sensor Navigation and positioning algorithm
  • 相关文献

参考文献4

二级参考文献34

  • 1方震,赵湛,郭鹏,张玉国.基于RSSI测距分析[J].传感技术学报,2007,20(11):2526-2530. 被引量:265
  • 2李炜,金亮,陈曦.基于Android平台的室内定位系统设计与实现[J].华中科技大学学报(自然科学版),2013,41(S1):422-424. 被引量:14
  • 3Chon Y, Cha H. Lifemap: a smartphone-based context provider for location-based service [J]. IEEE Pervasive Computing Magazine, 2011, 10(2): 58-67.
  • 4Miluzzo E, Lane N, Fodor K, et al. Sensing meets mobile social networks: the design, implementation, and evaluation of the cenceMe application[C]// Proceedings of 6th ACM Conf. Embedded Network Sensor Systems. Raleigh, North Carolina, USA: ACM, 2008: 337-350.
  • 5Kuo S P, Tseng Y C. Discriminant minimization search for large-Scale RF-based localization systems [J]. IEEE Transactions on mobile computing, 2011, 10(2) : 291 - 304.
  • 6Tian H, Xia L Y, Esmond M. A novel method for metropolitan-scale Wi-Fi localization based on public telephone booths[C]// Proceedings, Position Location and Navigation Symposium. Indian Wells, CA, USAa IEEE, 2010: 357-364.
  • 7Arvin W, Lin W, Chen W, et al. Accuracy performance analysis between war driving and war walking in metropolitan WiFi localization [J]. IEEE Transactions on Mobile Computing, 2010, 9(11) : 1551 - 1562.
  • 8Kuo S P, Tseng Y C. A scrambling method for fingerprint positioning based on temporal diversity and spatial dependency [J]. IEEE Trans. on Knowledge and Data Engineering, 2008, 20(5) : 678 - 684.
  • 9Sub Y S. Orientation estimation using a quaternion-based indirect Kalman filter with adaptive estimation of external acceleration [J]. IEEE Transactions Instrumentation and Measurement, 2010, 59(12): 3296-3305.
  • 10LU Henghui, ZHANG Sheng, IDNG Yuhan, et al. A Wi-Fi/GPS integrated system for urban vehicle positioning[C]// Proc ITSC. Madeira Island, Portugal: IEEE, 2010: 1663- 1668.

共引文献90

同被引文献26

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部