期刊文献+

一种基于MRF与区域合并的图像分割改进算法 被引量:2

An Improved Image Segmentation Algorithm Based on MRF and Region Merging
下载PDF
导出
摘要 针对现有基于马尔科夫随机场的图像分割算法容易出现过分割、分割结果不理想等问题,提出了一种基于马尔科夫随机场与区域合并的图像分割改进算法。该算法首先基于马尔科夫随机场与高斯混合模型理论的图像分割算法得到初始分割结果;然后利用各个区域间的相邻关系、颜色关系以及边界情况等信息,给出各个区域间的距离;最后按照区域间的距离与区域合并前后的颜色散度变化率对初始分割结果进行区域合并,输出最终的分割结果。使用伯克利标准图像库进行实验仿真,采用Dice系数和Jaccard系数作为评价指标。仿真结果表明,相比于现有基于MRF理论的算法,本文算法具有更好的分割效果。 The existing image segmentation algorithms based on Markov random field are prone to over segmentation and the segmentation results are not ideal.This paper presents an improved image segmentation algorithm based on Markov random field and region merging.First,the algorithm uses the image segmentation algorithm based on the theory of Markov random field and Gaussian mixture model to get the initial segmentation results;second,the region distance between each region is given by using the adjacent relationship,color relationship and boundary condition of each region;finally,the initial segmentation is performed according to the distance between regions and the change rate of color divergence after region merging.The final image segmentation results are output by region merging.In this paper,Berkeley standard image library is used for experimental simulation,and the Dice and Jaccard coefficients are used as the evaluation index of this paper.The experimental simulation shows that the proposed algorithm has better segmentation effect than the existing algorithm based on MRF theory.
作者 王国良 任允帅 Wang Guoliang;Ren Yunshuai(School of Information and Control Engineering,Liaoning Petrochemical University,Fushun Liaoning 113001,China)
出处 《辽宁石油化工大学学报》 CAS 2021年第4期78-84,共7页 Journal of Liaoning Petrochemical University
基金 国家自然科学基金项目(62073158、61473140) 辽宁省“兴辽人才”支持计划项目(XLYC1807030) 辽宁省“高校创新人才”计划项目(LR2017029) 辽宁省教育厅科研基金项目(L2016024)。
关键词 图像分割 马尔科夫随机场 高斯混合模型 区域合并 Image segmentation Markov random field Gaussian mixture model Region merging
  • 相关文献

参考文献10

二级参考文献164

  • 1颜刚,陈武凡,冯衍秋.广义模糊Gibbs随机场与MR图像分割算法研究[J].中国图象图形学报,2005,10(9):1082-1088. 被引量:13
  • 2刘扬,黄庆明,高文,叶齐祥.自适应高斯混合模型球场检测算法及其在体育视频分析中的应用[J].计算机研究与发展,2006,43(7):1207-1215. 被引量:18
  • 3李旭超,朱善安.图像分割中的马尔可夫随机场方法综述[J].中国图象图形学报,2007,12(5):789-798. 被引量:64
  • 4Dunn J C. Afuzzy relative of the ISODATA process and its use in detecting compact well separated clusters [J]. J. Cybern, 1974,3(3):32-57.
  • 5Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithm[M]. New York: Plenum, 1981.
  • 6Chuang K S, Tzeng H L, Chen S, et al. Fuzzy c-means clustering with spatial information for image segmentation[J]. Computerized Medical Imaging and Graphics, 2006,30: 9-15.
  • 7Tolias Y A,Panas S M. On applying spatial constraints in fuzzy image clustering using a fuzzy rule based system[J]. IEEE Trans. Signal Processing Letter, 1998,5 (10):245-247.
  • 8Hu Ying-kang, Hathaway R J. Density-weighhted fuzzy C-means clustering[J]. IEEE Trans on Fuzzy systems, 2009, 17 (1):243-252.
  • 9Ahmed M N,Yamany S M,Mohamed N,et al, A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data[J]. IEEE Trans on Medical Imaging, 2002, 21 : 193- 199.
  • 10Palnr, Bezdek J C. On cluster validity for the fuzzy C-means model[J]. IEEE Transactions on Fuzzy Systems, 1995,3 (3): 370-379.

共引文献97

同被引文献16

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部