期刊文献+

A New Multi-Symplectic Scheme for the KdV Equation 被引量:1

下载PDF
导出
摘要 We propose a new multi-symplectic integrating scheme for the Korteweg-de Vries(KdV)equation.The new scheme is derived by concatenating spatial discretization of the multi-symplectic Fourier pseudospectral method with temporal discretization of the symplectic Euler scheme.The new scheme is explicit in the sense that it does not need to solve nonlinear algebraic equations.It is verified that the multi-symplectic semi-discretization of the KdV equation under periodic boundary conditions has N semi−discrete multi-symplectic conservation laws.We also prove that the full-discrete scheme has N full-discrete multi-symplectic conservation laws.Numerical experiments of the new scheme on the KdV equation are made to demonstrate the stability and other merits for long-time integration.
作者 LV Zhong-Quan XUE Mei WANG Yu-Shun 吕忠全;薛梅;王雨顺(Jiangsu Key Laboratory for NSLSCS,School of Mathematical Science,Nanjing Normal University,Nanjing 210046;Lasg,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029)
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2011年第6期17-20,共4页 中国物理快报(英文版)
基金 by the National Natural Science Foundation of China under Grant No 10871099 the National Basic Research Program of China under Grant No 2010AA012304.
  • 相关文献

同被引文献12

  • 1Zabusky N J, Kruskal M D. Interaction of "solitons" in a collisionless plasma and the recurrence of initial states[J]. Physical Review Letters, 1965, 15(6): 240-243.
  • 2Rasulov M Coskun E. An efficient numerical method for solving the Korteveg-de Vries equation in a class of discontinuous functions[J]. Applied Mathematics and Computation, 1999, 102(2-3): 139-154.
  • 3郭本瑜.KdV-Burgers方程谱方法的误差估计[J]_数学学报,1985,28(3):1-15.
  • 4Zhao P F, Qin M Z. Multisymplectic geometry and multisymplectic Preissmann scheme for the KdV equation[J]. Journal of Physics A: Mathematical and General, 2000, 33(18): 3613-3626.
  • 5Hirsh R S. High order accurate solution of fluid mechanics problems by a compact differencing technique[J]. Journal of Computational Physics, 1975, 19(1): 16-42.
  • 6Lele S K. Compact finite difference schemes with spectral-like resolution[J]. Journal of Computational Physics, 1992, 103(1): 16-42.
  • 7Pirozzoli S. Conservative hybrid compact-WENO schemes for shock-turbulence interaction[J]. Journal of Computational Physics, 2002, 178(1): 81-117.
  • 8Ma Y P, Kong L H, Hong J L, et al. High-order compact splitting multisymplectic method for the coupled nonlinear SchrSdinger equations[J]. Computers and Mathematics with Applications, 2011, 61(2): 319-333.
  • 9Ismail H N A, Rageh T M, Salem G S E. Modified approximation for the KdV-Burgers equation[J]. Applied Mathematics and Computation, 2014, 234:58-62.
  • 10王廷春,郭柏灵.一维非线性Schrdinger方程的两个无条件收敛的守恒紧致差分格式[J].中国科学:数学,2011,41(3):207-233. 被引量:12

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部