摘要
The purpose of this work is to study the influences of Al and/or Ti addition on the microstructures, mechanical properties and corrosion properties of CoCrFeNi-(Al, Ti) high entropy alloy(HEA) coatings. Three coatings, AlCoCrFeNi(Ⅰ), CoCrFeNiTi_(0.5)(Ⅱ) and AlCoCrFeNiTi_(0.5)(Ⅲ), were fabricated by laser cladding successfully. The AlCoCrFeNi(Ⅰ) coating exhibited a simple body-centered cubic(BCC) solid-solution structure, whereas the CoCrFeNiTi_(0.5)(Ⅱ) alloy exhibited a face-centered cubic(FCC) solid-solution and a small amount of Laves phase. The BCC phases in AlCoCrFeNiTi _(0.5)(Ⅲ) coating were characterized as Fe–Cr rich disordered BCC phases(A2) and Al-Ni–Ti-rich ordered BCC phases(L2_1) separately. The AlCoCrFeNiTi_(0.5)(Ⅲ) coating with dual-phase BCC structure showed the optimal performance of both mechanical and corrosion properties, which was superior to BCC-based AlCoCrFeNi(Ⅰ) and FCC-based CoCrFeNiTi_(0.5)(Ⅱ) coatings. Nanoindentation tests and quantitative investigations on the strengthening mechanisms of AlCoCrFeNiTi_(0.5)(Ⅲ) coating were conducted, suggesting that the precipitation strengthening is the dominant strengthening mechanism. In short, the addition of moderate amount of Al and Ti in CoCrFeNi HEA shows potential for the development of a high strength and corrosion-resistant coating.
基金
financially supported by the Taishan Scholarship of Climbing Plan(No.tspd20161006)
the National Natural Science Foundation of China(Nos.51772176 and 51971121)。