期刊文献+

融合糖苷水解酶在生物质转化中的研究进展 被引量:3

Research progress of fusion glycoside hydrolase in biomass conversion
原文传递
导出
摘要 自然界中丰富的生物质多糖可被降解为低聚寡糖或单糖.利用这些小分子糖可生产乙醇、医药制品和其他化工原料.生物质多糖的结构非常复杂,它的降解涉及多种糖苷水解酶的协同催化作用.这些糖苷水解酶有木聚糖酶、葡聚糖酶和纤维素酶等.与单个酶或简单混合酶相比,通过共价结合的融合糖苷水解酶对多糖底物的降解效率更高,选择合适的融合酶构建策略还能提高酶的表达量、活性和稳定性.这种融合酶在利用生物质生产能源物质和其他化工原料时可达到过程集成的效果,从而简化生产步骤、节约成本,所以融合糖苷水解酶能有效解决生物质利用中的瓶颈问题.本文综述了采用融合技术对糖苷水解酶进行融合改造的研究进展,包括融合酶构建策略、融合酶的性能和优势以及融合糖苷水解酶的应用.最后对该领域的基础研究和应用前景进行了展望,为融合糖苷水解酶的进一步开发和利用提供参考. The abundant biomass polysaccharides in nature can be degraded into oligo-oligosaccharides or monosaccharides. These sugars with small molecule can be used to produce ethanol, pharmaceutical products and other chemical materials. The structure of plant polysaccharides is very complex, and its degradation involves the synergistic catalysis of various glycoside hydrolases, such as xylanase, glucanase, cellulose. Compared with a single enzyme or simple mixed enzymes, the degradation efficiency of the polysaccharides by the fusion enzyme is higher. The expression level, activity and stability of the enzyme could also be improved by choosing the appropriate strategy to construct fusion enzyme. This fusion enzyme could achieve the process integration when using the biomass to produce energy substances and other chemical materials, which would simplify the production steps and save costs. Therefore, the fusion glycoside hydrolase could effectively solve the bottleneck problem in the utilization of biomass. This article reviews the research progress of glycoside hydrolases modification by fusion technology, including the construction strategies, the capability and application of fusion glycoside hydrolase, the practical applications and prospects for fundamental research in this field. It provides a reference for the further development and utilization of the fusion glycoside hydrolase in the biomass degradation.
作者 李娜 夏欢 江燕斌 Na Li;Huan Xia;Yanbin Jiang(School of Chemistry and Chemical Engineering,South China University of Technology,Guangzhou 510640,China)
出处 《中国科学:化学》 CAS CSCD 北大核心 2021年第7期831-843,共13页 SCIENTIA SINICA Chimica
基金 国家自然科学基金(编号:21776102)资助项目。
关键词 生物质 生物能源 水解 糖苷水解酶 融合酶 应用 biomass bioenergy hydrolysis glycoside hydrolase fusion enzyme application
  • 相关文献

参考文献6

二级参考文献59

  • 1李相前,邵蔚蓝.海栖热袍菌内切葡聚糖酶Cel12B与木聚糖酶XynA CBD结构域融合基因的构建、表达及融合酶性质分析[J].微生物学报,2006,46(5):726-729. 被引量:20
  • 2宋凯.合成生物学导论.北京:科学出版社,2012.
  • 3Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Keasling JD. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature, 2006, 440:940-943.
  • 4Martin V J, Pitera DJ, Withers ST, Newman JD, Keasling JD. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nature, 2003, 21:796-802.
  • 5Forster AC, Church GM. Towards synthesis of a minimal cell. Mol Syst Biol, 2006, 2:45.
  • 6Zhang YHP. Production of biocommodities and bioelectricity by cell-free synthetic enzymatic pathway biotransformations: challenges and opportunities. Biotechnol Bioeng, 2010, 105:663-677.
  • 7Zhang YHP, Sun J, Zhong JJ. Biofuel production by in vitro synthetic enzymatic pathway biotransformation. Curr Opin Biotechnol, 2010, 21 : 663-669.
  • 8Wang Y, Huang W, Sathitsuksanoh N, Zhu Z, Zhang YHP. Biohydrogenation from biomass sugar mediated by in vitro synthetic enzymaticpathways. Chem Biol, 2011, 18:372-380.
  • 9Jewett MC, Calhoun KA, Voloshin A, Wuu JJ, Swartz JR. An integrated cell-free metabolic platform for protein production and synthetic biology. Mol Syst Biol, 2008, 4:220.
  • 10Zhang YHP, Myung S, You C, Zhu Z, Rollin JA. Toward low-cost biomanufacturing through in vitro synthetic biology: bottom-up design. J Mater Chem, 2011, 21:18877-18886.

共引文献25

同被引文献32

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部