期刊文献+

基于改进非支配排序遗传算法的配电网动态重构 被引量:11

Dynamic Reconfiguration of Distribution Network Based on Improved NSGA-Ⅱ
下载PDF
导出
摘要 针对分布式电源大规模接入配电网情况下配电网的动态重构问题,提出一种基于改进非支配排序遗传算法(non-dominated sorting genetic algorithmsⅡ,NSGA-Ⅱ)的配电网动态重构策略。首先,以系统运行成本和电压偏移最小为目标建立配电网动态重构模型。其次,结合参数自适应策略和基于可行解优越性的约束处理技术提出NSGA-Ⅱ改进算法对模型进行求解。再次,用超体积(hypervolume)指标选择最佳的帕累托解集,并通过模糊决策技术从帕累托解集中选择最佳方案。最后,以IEEE 33节点系统为例进行仿真。结果表明:该模型可以在降低系统运行成本的同时提高系统电能质量。 Aiming at the problem of dynamic reconfiguration of distribution network when distributed power is connected to distribution network on a large scale,a dynamic reconfiguration strategy of distribution network was proposed based on improved non-dominated sorting genetic algorithmsⅡ(NSGA-II).Firstly,the dynamic reconfiguration model of distribution network was established based on the minimum operating cost and voltage offset.Secondly,combined with parameter adaptive strategy and constraint processing technology based on the superiority of feasible solution,improved NSGA-II was proposed to solve the model.Thirdly,the hypervolume index was used to select the best Pareto solution set,and the best scheme was selected from the Pareto solution set by fuzzy decision technology.Finally,a simulation of IEEE 33 node system was carried out.The results show that the model can improve the power quality while reducing the operating cost of the system.
作者 张照垄 何莉 吴霜 ZHANG Zhao-long;HE Li;WU Shuang(School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan 430068, China;School of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China)
出处 《科学技术与工程》 北大核心 2021年第21期8916-8922,共7页 Science Technology and Engineering
基金 国家重点研发计划(2019YFB2102703) 深圳市科创委面上项目(20200125)。
关键词 配电网动态重构 改进NSGA-Ⅱ算法 约束处理技术 分布式电源 dynamic reconfiguration of distribution network improved NSGA-II constraint handling technology distributed generation
  • 相关文献

参考文献9

二级参考文献105

  • 1刘健,徐精求,董海鹏.考虑负荷变化的配电网动态优化[J].继电器,2004,32(13):15-19. 被引量:14
  • 2麻秀范,张粒子.基于十进制编码的配网重构遗传算法[J].电工技术学报,2004,19(10):65-69. 被引量:75
  • 3余健明,王征,许苗.考虑负荷变化的配电网动态分时段重构[J].高电压技术,2007,33(9):125-128. 被引量:16
  • 4Giagkiozis I, Fleming P J. Methods for multi-objectiveoptimization: An analysis[J]. Information Sciences, 2015,293(1): 338-350.
  • 5Knowles J, Corne D. The pareto archived evolutionstrategy: A new baseline algorithm for paretomultiobjective optimisation[C]. Proc of the 1999 Congresson Evolutionary Computation CEC. Washington DC: IEEEPress, 1999, 1: 98-105.
  • 6Corne D W, Knowles J D, Oates M J. The Paretoenvelope-based selection algorithm for multiobjectiveoptimization[C]. Parallel Problem Solving from NaturePPSN VI. Berlin: Springer-Heidelberg, 2000: 839-848.
  • 7Laumanns M. SPEA2: Improving the strength Paretoevolutionary algorithm[C]. Evolutionary Methods forDesign Optimisation and Control. Cl MNE, 2002, 3242:95-100.
  • 8Zhang Q, Li H. MOEA/D: A multiobjective evolutionaryalgorithm based on decomposition[J]. IEEE Trans onEvolutionary Computation, 2007, 11(6): 712-731.
  • 9Deb K, Pratap A, Agarwal S, et al. A fast and elitistmultiobjective genetic algorithm: NSGA-II[J]. IEEE Transon Evolutionary Computation, 2002, 6(2): 182-197.
  • 10Srinivas N, Deb K. Muiltiobjective optimization usingnondominated sorting in genetic algorithms[J]. IEEE Transon Evolutionary Computation, 1994, 2(3): 221-248.

共引文献177

同被引文献140

引证文献11

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部