期刊文献+

一种轨道交通人群异常行为智能监控机器人设计 被引量:1

Design of an Intelligent Monitoring Robot for Abnormal Crowd Behavior in Rail Transit
下载PDF
导出
摘要 针对目前轨道交通领域在人群异常行为方面的安防监控设备存在监控盲区、容易受到遮挡干扰等不足,提出了一种轨道交通人群异常行为智能监控机器人设计。该设计通过沿着预设导轨移动,并配备有行走机构、电动伸缩杆、电动云台和摄像监控设备,可以进一步扩大监控的范围和转换监控角度以避免遮挡干扰,适合应用在地铁站、高铁站等场所,为人群异常行为的检测提供了一种新的解决思路和技术方案。 In view of the shortcomings of the current security monitoring equipment in the field of rail transit,such as blind area and easy to be blocked,an intelligent monitoring robot for abnormal crowd behavior in rail transit is proposed.By moving along the preset guide rail and equipped with walking mechanism,electric telescopic rod,electric pan tilt and camera monitoring equipment,the design can further expand the monitoring range and change the monitoring angle to avoid occlusion interference.It is suitable for application in subway stations,high-speed railway stations and other places,and provides a new solution and technical scheme for the detection of abnormal crowd behavior.
作者 邱锦龙 刘国成 霍睿 QIU Jin-long;LIU Guo-cheng;HUO Rui(Guangzhou Railway Polytechnic,Guangzhou Guangdong 510430)
出处 《数字技术与应用》 2021年第7期138-140,共3页 Digital Technology & Application
基金 2020年广东省科技创新战略专项资金项目“基于轨道交通的人群异常行为分析研究”(pdjh2020b1145)。
关键词 轨道交通 轨道机器人 异常行为 Rail transit Orbital robot Abnormal behavior
  • 相关文献

参考文献4

二级参考文献41

  • 1志扬.视频监控中人群状态分析及异常事件检测方法研究[硕士学位论文].天津:天津大学,2013.
  • 2Andrade EL, Blunsden S, Fisher RB. Hidden Markovmodels for optical flow analysis in crowds. The 18thInternational Conference on Pattern Recognition. HongKong, China. IEEE Computer Society. 2006. 460-463 .
  • 3Ma R, Li LY, Huang WM, Tian Q. On pixel count basedcrowd density estimation for visual surveillance. IEEEConference on in Cybernetics and Intelligent Systems.Singapore. IEEE SMC. 2004. 170-173.
  • 4Gyu-Jin K, Eom KY,Kim MH,Tk A. Automatedmeasurement of crowd density based on edge detection andoptical flow. 2nd International Conference on IndustrialMechatronics and Automation. Wuhan: Curran Associates,Inc. 2010. 553-556.
  • 5Xinyu W, Liang GY, Lee KK, Xu YS. Crowd densityestimation using texture analysis and learning. IEEEInternational Conference on Robotics and Biomimetics.Kunming. Institute of Electrical and Electronics Engineers.2006.214-219.
  • 6Kilambi P, Masoud 0,Papanikolopoulos N. Crowd analysisat mass transit sites. Intelligent Transportation SystemsConference. Toronto. Curran Associates, Inc. 2006.753-758.
  • 7Elgairanal A, Elgammal A, Duraiswami R, Lanys D.Background and foreground modeling using nonparametrickernel density estimation for visual surveillance.Proceedings of the IEEE, 2002, 90(7): 1151-1163 .
  • 8Khansari M, Rabiee HR, Asadi M,Mohammed G. Crowdedscene object tracking in presence of Gaussian White noiseusing undecimated wavelet features. 9th InternationalSymposium on Signal Processing and its Applications.Shaijah: Curran Associates, Inc. 2007. 1-4.
  • 9Oliver NM, Rosario B,Pentland AP. A Bayesian computervision system for modeling human interactions. IEEE Trans,on Pattern Analysis and Machine Intelligence, 2000, 22(8):831-843.
  • 10Ge W, Collins RT, Ruback B. Automatically detecting thesmall group structure of a crowd. Workshop in Applicationsof Computer Vision. Snowbird, Utah: Curran Associates,Inc. 2009. 1-8.

共引文献14

同被引文献24

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部