摘要
为了提高近景摄影测量中编码标志点的编码容量和解码准确率,提出一种由定位十字标、起始数字、编码字符组成的合作编码定位对应圆型标志方法。通过高斯滤波对采集的图像进行平滑的预处理,可以消除噪声;利用自适应局部阈值法对目标进行分割,可以获取字符区域与十字标区域;使用TensorFlow-MLP(Multilayer Perceptron)神经网络训练好的字符样本库对字符进行分类与识别;对十字标区域进行填充修复,经过灰度平方加权质心法可以实现亚像素定位。该类型合作编码标志在实际应用中具有唯一辨识性,定位精度高且解码准确高效。
To improve the encoding capacity and decoding accuracy of encoded marker points in close-range photogrammetry,a method of cooperative encoding and positioning corresponding circular markers comprising positioning crosses,initial numbers,and encoded characters is proposed.Gaussian filtering is used to smoothly preprocess the collected images to eliminate noise.The adaptive local threshold method is employed to segment the target to obtain the character area and cross mark area.TensorFlow-MLP(Multilayer Perceptron)neural network is trained using the character sample library to classify and recognize characters.Finally,the cross mark area is filled and repaired.Sub-pixel positioning is achieved through the gray square weighted centroid method.This type of cooperative coding sign is uniquely identifiable in practical applications with high positioning accuracy and accurate and efficient decoding.
作者
刘慧洁
买买提明·艾尼
古丽巴哈尔·托乎提
亚库普·艾合麦提
张全忠
Liu Huijie;Mamtimin Geni;Gulbahar Tohti;Yakup Ahmat;Zhang Quanzhong(School of Mechanical Engineering,Xinjiang University,Urumqi,Xinjiang 830047,China;Company of Baibo Electromechanical Technology,Urumqi,Xinjiang 830011,China)
出处
《激光与光电子学进展》
CSCD
北大核心
2021年第12期183-191,共9页
Laser & Optoelectronics Progress
基金
国家自然科学基金(51565054,11772289)。
关键词
图像处理
摄影测量
合作编码标志
多层感知机神经网络
灰度加权质心法
image processing
photogrammetry
cooperative coded targets
multilayer perceptron neural network
gray weighted centroid method