期刊文献+

图像式路基监测系统中站内多相机间位姿标定方法 被引量:3

Calibration Method of Position-Pose Relation Between Cameras in Transfer Station of Image-Based Subgrade Monitoring System
原文传递
导出
摘要 相机间位姿关系是影响图像式无砟轨道路基沉降测量精度的主要因素。监测站中相机必需指向各自的监测靶面,因此相机间常存在无公共视场的情况。根据机器视觉中手眼标定问题与相机间位姿标定的等价性,提出了一种基于特征点的相机间位姿标定方法。通过在监测靶面上设置4个呈方形分布的特征点,使相机组执行2次运动,并在3个不同的位置拍摄靶面图像,通过P4P(perspective-four-point)算法求解相机与靶标的位姿关系,进而得到相机的移动轨迹;用矩阵重排的方法求得相机间位姿转换矩阵,并利用Levenberg-Marquardt算法进行非线性优化。仿真结果表明噪声方差在1pixel内时角度误差小于0.03°,平移误差小于0.3cm。通过仿真验证了本文方法的有效性与实用性,本文方法能够满足无砟轨道路基沉降测量的需求。 The position-pose relation between cameras is the main factor that affects the accuracy of an image-based ballastless track subgrade monitoring system.Each camera in the monitoring station must face the corresponding monitoring target surface,so there is often no public field of view between the cameras.According to the equivalence between the hand-eye calibration problem in robot vision and the calibration of position-pose relation between cameras,aposition-pose calibration method based on feature points is proposed.Four feature points with square distribution are set on the monitoring target surface.A set of cameras is moved twice in small step and takes the pictures of the target surface in three different positions.The P4P(perspective-four-point)algorithm is used to solve the position-pose relation between the camera and the target,and then obtains the movement trajectory of the camera.The matrix rearrangement method is used to obtain the pose conversion matrix between the cameras,and the Levenberg-Marquardt algorithm is used for nonlinear optimization.Simulation results indicate that the angle error is less than 0.03°and the translation error is less than 0.3 cm when the noise variance is less than 1 pixel.The effectiveness and practicability of the method in this paper are verified by simulation,and the method in this paper can meet the needs of the settlement measurement of the ballastless track subgrade.
作者 闵永智 胡捷 孙天放 Min Yongzhi;Hu Jie;Sun Tianfang(School of Automation and Electrical Engineering,Lanzhou Jiaotong University,Lanzhou,Gansu730070,China;Gansu Provincial Engineering Research Center for Artificial Intelligence and Graphics and Image Processing,Lanzhou,Gansu730070,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2021年第12期445-453,共9页 Laser & Optoelectronics Progress
基金 国家自然科学基金(61663022) 甘肃省自然科学基金(18JR3RA105)。
关键词 机器视觉 无公共视场 位姿测量 非线性优化 machine vision no public view position-pose measurement nonlinear optimization
  • 相关文献

参考文献11

二级参考文献101

共引文献151

同被引文献19

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部