摘要
可展结构在航空航天领域应用广泛,其性能的优劣直接决定航天任务的成败。随着各种空间设备向着大型化和复杂化方向发展,对性能优良的可展结构的需求与日俱增。为了设计具有高可控性、大收纳率的可展结构,从刚性折纸的角度出发,对一种已有折纸图案进行改进,设计出一种新型零厚度正六边形折纸。进一步结合桁架理论和厚板折纸理论分析并降低了其自由度,从而提高了该机构的可控性,并借助D-H法对其进行了运动学分析。考虑到实际工程中应用的空间设备多有一侧为平整的工作表面,通过采用新的机构对原有机构进行运动等效替换,使其具有一侧平整展开表面,最终得到了一种具有单自由度大折展比的可展结构设计方案。
Deployable structure is widely used in the field of aerospace engineering. Its performance can directly determine the success or failure of aerospace mission. With the development of large-scale and complex space equipment, there is an increasing demand for deployable structures with excellent performance. In order to design a deployable structure with high controllability and large storage rate, a new kind of regularly hexagonal origami pattern is designed from the perspective of rigid origami. Furthermore, the degree of freedom is reduced and the controllability is improved by combining the theories of the truss method and thick-panel origami. A kinematic study is conducted with D-H matrix method. Considering that the working surface of much space equipment is flat, the original mechanisms are replaced by other mechanisms without affecting original movements. Finally, a new kind of deployable structure with single degree of freedom and large expansion/packaging ratio is obtained, which is found to exhibit considerable potential in future space applications.
作者
张霄
李明
崔琦峰
陈学松
马家耀
陈焱
ZHANG Xiao;LI Ming;CUI Qifeng;CHEN Xuesong;MA Jiayao;CHEN Yan(Key Laboratory of Mechanism Theory and Equipment Design of the Ministry of Education,Tianjin University,Tianjin 300072;Space Structure and Mechanism Technology Laboratory,China Aerospace Science and Technology Group Co.Ltd,Shanghai 201109;Shanghai Institute of Aerospace System Engineering,Shanghai 201109;School of Mechanical Engineering,Tianjin University,Tianjin 300372)
出处
《机械工程学报》
EI
CAS
CSCD
北大核心
2021年第11期153-164,共12页
Journal of Mechanical Engineering
基金
国家自然科学基金资助项目(51825503,51721003)。
关键词
可展结构
刚性折纸
桁架理论
厚板折纸
机构运动学
deployable structure
rigid origami
truss method
thick-panel origami
kinematics