摘要
以秩一支持张量机(Rank-one Support Tensor Machine,R1-STM)为代表的张量学习现已成为模式识别领域的一个研究热点,具有非常广泛的应用.秩一支持张量机是非凸优化问题,不但求解非常耗时,而且得到的解是局部最优解.基于张量核函数的支持张量机(Support Tensor Machine based on Tensor-Kernel,TK-STM)能够解决非线性分类问题,不仅继承了支持向量机(Support Vector Machine,SVM)的优点,而且保持了更多的张量结构信息,能够通过一步迭代得到全局最优解.数值试验部分采用了五个向量型数据集和七个张量型数据集,并且将TK-STM与SVM和R1-STM这两个经典算法在分类精度和训练时间上进行了比较,实验结果表明无论在分类效果上还是训练时间上,TK-STM都具有明显的优势,特别是在处理高维小样本数据集上.
Represented by Rank-one Support Tensor Machine(R1-STM),Tensor learning has become a hotspot in the field of pattern recognition,and it has been widely used.R1-STM is a non-convex optimization problem,it is very time-consuming and suffers from local optimal.Support Tensor Machine based on Tensor-Kernel(TK-STM)can solve nonlinear classification problem,and it not only inherits the merits of Support Vector Machine(SVM),but also keeps more structure information,and can get the global optimal solution through one-step iteration.In the numerical experiment,five vector-type datasets and seven tensortype datasets were used.Based on two aspects of classification accuracy and training time,we compared TK-STM with the classical methods of SVM and R1-STM,the results show that TK-STM has obvious advantages in both classify effect and training time,especially in the high dimensional and small sample size datasets.
作者
杨鑫刚
耿娟
王来生
赵新斌
YANG Xin-gang;GENG Juan;WANG Lai-sheng;ZHAO Xin-bin(School of Safety Engineering,China University of Labor Relations,Beijing 100048,China;College of Mathematics and Statistics,Hebei University of Economics and Business,Shijiazhuang 050061,China;College of Science,China Agriculture University,Beijing 100083,China;Aviation Safety Institute,China Academy of Civil Aviation Science and Technology,Beijing 100081,China)
出处
《数学的实践与认识》
2021年第14期142-154,共13页
Mathematics in Practice and Theory
基金
中国劳动关系学院2020年“中央高校基本业务费专项资金”项目(20ZYJS013)
国家自然科学基金项目(11371365、11301535、11271367)
国家自然科学基金民航联合研究基金项目(U1533120)
国家自然科学基金天元基金项目(11626080)
河北省自然科学基金青年基金项目(A2017207011)。
关键词
分类问题
支持张量机
张量表示
张量核函数
模式识别
classification problem
support tensor machine
tensor representation
tensor-kernel
pattern recognition