期刊文献+

Effect of Grain Boundary on Spinodal Decomposition Using the Phase Field Crystal Method 被引量:2

下载PDF
导出
摘要 Spinodal decomposition (SD) with different grain boundaries (GBs) is investigated on the atomic scale using the novel phase field crystal model.It is demonstrated that the decomposition process is initiated by precipitating one phase with a larger lattice constant in the tension region at the GBs and the other one with a smaller lattice constant in the compression region.As the phase separation proceeds,the dislocations comprising the low-angle GBs migrate toward the compositional domain boundaries to relieve the coherent strain energy,and eventually become randomly distributed in the coarsening regime of SD,which leads to the disappearance of the low-angle GBs.For high-angle GBs,the location of GBs remains unchanged,while the atoms rearrange along the GBs to fit the stress field arising from compositional inhomogeneity.
作者 YANG Tao CHEN Zheng ZHANG Jing DONG Wei-Ping WU Lin 杨涛;陈铮;张静;董卫平;伍林(State Key Laboratory of Solidification Processing,School of Material Science and Engineering,Northwestern Polytechnical University,Xi’an 710072)
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2012年第7期272-275,共4页 中国物理快报(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant Nos 51174168,51075335 and 10902086 the Graduate Starting Seed Fund of NPU under Grant No Z2012025 the NPU Foundation for Fundamental Research under Grant Nos JC201109 and JC201005。
  • 相关文献

同被引文献37

  • 1Echebarria B,Folch R,Karma A,et al.Quantitative phasefield model of alloy solidification[J].Phys Rev E,2004,70:061604.
  • 2Greenwood M,Haataja M,Provatas N.Crossover scaling of wavelength selection in directional solidification of binary alloys[J].Phys Rev Lett,2004,93:246101.
  • 3Warren J A,Kobayashi R,Carter W C,et al.A continuum model of grain boundaries[J].J Cryst Growth,2000,211:18.
  • 4Warren J A,Kobayashi R,Lobkovsky A E,et al.Extending phase field models of soliification to polycrystalline[J].Acta Materialia,2003,53:6035.
  • 5Haataja M,Léonard F.Influence of mobile dislocation on phase separation in binary alloys[J].Phys Rev B,2004,69:081201.
  • 6Fan D,Chen L Q.Diffuse-interface description of grain boundary motion[J].Acta Metall,1996,45:611.
  • 7Ramakrishnan T,Yussouff M.First-principles order-parameter theory of freezing[J].Phys Rev B,1979,19:2775.
  • 8Elder K R,Mark Katakowski,Mikko Haataja,et al.Modeling elasticity in crystal growth[J].Phys Rev Lett,2002,88:245701.
  • 9Elder K R,Nikolas Provatas,Joel Berry,et al.Phase-field crystal modeling and classical density functional theory of freezing[J].Phys Rev B,2007,75:064107.
  • 10Tegze G,Gránásy L,Tóth G I,et al.Diffusion-controlled anisotropic growth of stable and metastable crystal polymorphs in the phase the phase-field crystal model[J].Phys Rev Lett,2009,3:101.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部