期刊文献+

含负项top-k高效用项集挖掘算法 被引量:4

Algorithm for mining top-k high utility itemsets with negative items
下载PDF
导出
摘要 含负项高效用项集(HUI)挖掘是新兴的数据挖掘任务之一。为了挖掘满足用户需求的含负项HUI结果集,提出了含负项top-k高效用项集(THN)挖掘算法。为了提升THN算法的时空性能,提出了自动提升最小效用阈值的策略,并采用模式增长方法进行深度优先搜索;使用重新定义的子树效用和重新定义的本地效用修剪搜索空间;使用事务合并技术和数据集投影技术解决多次扫描数据库的问题;为了提高效用计数的速度,使用效用数组计数技术计算项集的效用。实验结果表明,THN算法的内存消耗约为HUINIV-Mine算法的1/60,约为FHN算法的1/2;THN算法的执行时间是FHN算法的1/10;而且该算法在密集数据集上的性能更好。 Mininng High Utility Itemsets(HUI)with negative items is one of the emerging itemsets mining tasks.In order to mine the result set of HUI with negative items meeting the user needs,a Top-k High utility itemsets with Negative items(THN)mining algorithm was proposed.In order to improve the temporal and spatial performance of the THN algorithm,a strategy to automatically increase the minimum utility threshold was proposed,and the pattern growth method was used for depth-first search;the search space was pruned by using the redefined subtree utility and the redefined local utility;the transaction merging technology and dataset projection technology were employed to solve the problem of scanning the database for multiple times;in order to increase the utility counting speed,the utility array counting technology was used to calculate the utility of the itemset.Experimental results show that the memory usage of THN algorithm is about 1/60 of that of the HUINIV(High Utility Itemsets with Negative Item Values)-Mine algorithm,and is about 1/2 of that of the FHN(Faster High utility itemset miner with Negative unit profits)algorithm;the THN algorithm takes 1/10 runtime of that of the FHN algorithm;and the THN algorithm achieves better performance on dense datasets.
作者 孙蕊 韩萌 张春砚 申明尧 杜诗语 SUN Rui;HAN Meng;ZHANG Chunyan;SHEN Mingyao;DU Shiyu(School of Computer Science and Engineering,North Minzu University,Yinchuan Ningxia 750021,China)
出处 《计算机应用》 CSCD 北大核心 2021年第8期2386-2395,共10页 journal of Computer Applications
基金 国家自然科学基金资助项目(62062004) 宁夏自然科学基金资助项目(2020AAC03216) 计算机应用技术自治区重点学科项目(PY1902) 宁夏高等学校一流学科建设项目(电子科学与技术学科)(NXYKXY2017A07)。
关键词 项集挖掘 高效用项集 top-k项集 负项 正项 itemset mining high utility itemset top-k itemset negative item positive item
  • 相关文献

参考文献1

二级参考文献20

  • 1Wang Le , Feng Lin, j in Bo. Sliding window-based frequent itemsets mining over data streams using tail pointer table[J]. Int Journal of Computational Intelligence Systems, 2014,7(1): 25-36.
  • 2Tseng V S, Shie B, Wu C, et al. Efficient algorithms for mining high utility itemsets from transactional databases[J]. IEEE Trans on Knowledge and Data Engineering, 2013, 25 (8): 1772-1786.
  • 3Tseng V S, Wu C W, Shie B E, et al. UP-Growth: An efficient algorithm for high utility itemset mining[C]//Proc of the 16th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York: ACM, 2010: 253-262.
  • 4Ahmed C F, Tanbeer S K, Jeong B S, et al. Efficient tree structures for high utility pattern mining in incremental databases[J]. IEEE Trans on Knowledge and Data Engineering, 2009, 21(12): 1708-1721.
  • 5Yao H, Hamilton H J. Mining itemset utilities from transaction databases[J]. Data and Knowledge Engineering, 2006, 59(3): 603-626.
  • 6Liu Y, Liao W K, Choudhary A. A two-phase algorithm for fast discovery of high utility item sets[GJ //LNCS 3518: Proc of the 9th Pacific-Asia Conf on Advances in Knowledge Discovery and Data Mining. Berlin: Springer, 2005: 689-695.
  • 7Li H. Huang H. Chen Y. et al. Fast and memory efficient mining of high utility iternsets in data streams[C] I/Proc of the 8th IEEE Int Conf on Data Mining. Los Alamitos. CA, IEEE Computer Society. 2008: 881-886.
  • 8Liu J. Wang K. Fung B. Direct discovery of high utility iternsets without candidate generation[C] I/Proc of the 12th IEEE Int Conf on Data Mining. Los Alamitos. CA, IEEE Computer Society. 2012: 984-989.
  • 9Lin C W. Hong T P. Lan G C. er al. Mining high utility it ernsets based on the pre-large concept[GJ I/Advances in Intelligent Systems and Applications-Volume 1. Berlin: Springer. 2013: 243-250.
  • 10Liu M. Qu J. Mining high utility itemset s without candidate generation[C]//Proc of the 21 st ACM Inr Conf on Information and Knowledge Management. New York, ACM. 2012, 55-64.

共引文献8

同被引文献26

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部