期刊文献+

Mechanically activated starch magnetic microspheres for Cd(Ⅱ)adsorption from aqueous solution 被引量:3

下载PDF
导出
摘要 Magnetic starch microspheres(AAM-MSM)were synthesized via an inverse emulsion graft copolymerization by using mechanically activated cassava starch(MS)as a crude material,acrylic acid(AA)and acrylamide(AM)as graft copolymer monomers,and methyl methacrylate(MMA)as the dispersing agent and used as an adsorbent for the removal of Cd(Ⅱ)ions from aqueous solution.Fourier-transform infrared spectroscopy(FT-IR),X-ray photoelectron spectroscopy(XPS),scanning electron microscopy(SEM),and vibrating sample magnetometry(VSM)were used to characterize the AAM-MSM adsorbent.The results indicated that AA,AM,and MMA were grafted to the MS,and the Fe_(3)O_(4) nanoparticles were encapsulated in the AAM-MSM adsorbent microspheres.The adsorbent exhibited a smooth surface,uniform size,and good sphericity because of the addition of the MMA and provided more adsorption sites for the Cd(Ⅱ)ions.The maximum adsorption capacity of Cd(Ⅱ)on the AAM-MSM was 39.98 mg·g^(-1).The adsorbents were superparamagnetic,and the saturation magnetization was 16.7 A·m^(2)·kg^(-1).Additionally,the adsorption isotherms and kinetics of the adsorption process were further investigated.The process of Cd(Ⅱ)ions adsorbed onto the AAM-MSM could be described more favorably by the pseudo-second-order kinetic and Langmuir isothermal adsorption models,which suggested that the chemical reaction process dominated the adsorption process for the Cd(Ⅱ)and chemisorption was the rate-controlling step during the Cd(Ⅱ)removal process.
出处 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第5期40-49,共10页 中国化学工程学报(英文版)
基金 This work was supported by the National Natural Science Foundation of China(21766001,21961160741) Guangxi Natural Science Foundation of China(2018GXNSFAA281342) the Dean Project of Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology(2018Z009) Special funding for"Guangxi Bagui Scholars".
  • 相关文献

参考文献4

二级参考文献33

共引文献17

同被引文献31

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部