期刊文献+

电池系统热管理控制策略与能耗评估研究 被引量:2

Research on Thermal Management Control Strategy and Energy Consumption Evaluation of Battery System
下载PDF
导出
摘要 电池系统中合适的热管理控制策略对于提高整车的能量利用效率具有重要意义。文章基于验证的仿真模型进行能耗与策略评估。结果表明控制水温过高或者过低都会导致热管理能耗的增加,控制水温存在最优解;控制流量在一定范围内,热管理能耗随流量的增大而增大。另外,文章基于热管理能耗、恒温占比、温降速率三个性能指标,采用加权综合法评价不同水温策略;不同水温策略方案对比表明控制水温为20℃时,其综合性能评价值最高。 The appropriate thermal management control strategy in the battery system is of great significance for improving the energy utilization efficiency of the vehicle. This paper evaluates the energy consumption and strategy based on the verified simulation model. The results show that the control water temperature is too high or too low will lead to the increase of thermal management energy consumption, and there is an optimal solution for controlling water temperature;The control flow is within a certain range, and the thermal management energy consumption increases with the increase of flow. In addition, based on the three performance indicators of thermal management energy consumption, constant temperature ratio and temperature drop rate, this paper adopts weighted comprehensive evaluation method to judge the advantages and disadvantages of different water temperature strategies;the result shows that when the water temperature is controlled at 20℃, the comprehensive performance evaluation value is the highest.
作者 江丰 阎明瀚 闫仕伟 刘华俊 徐宇虹 江吉兵 JIANG Feng;YAN Minghan;YAN Shiwei;LIU Huajun;XU Yuhong;JIANG Jibing(EVE Energy Co.,Ltd.,Guangdong Huizhou 516000)
出处 《汽车实用技术》 2021年第15期9-13,17,共6页 Automobile Applied Technology
关键词 电池 热管理 控制 策略 能耗 Battery Thermal management Control Strategy Energy consumption
  • 相关文献

参考文献3

二级参考文献74

  • 1朱宝璋.关于灰色系统基本方法的研究和评论[J].系统工程理论与实践,1994,14(4):52-60. 被引量:80
  • 2Levine P, Pomerol J C. PRIAM, an interactive program for choosing among multiple attribute alternatives[J]. European Journal of Operations Research, 1986, 25(2): 272-280.
  • 3Grabowski M R,Wallace W A. An expert system for maritime pilots: Its design and assessment using gaming[J]. Management Science, 1993, 3(12): 1506-1520.
  • 4Booker L,Goldberg D E, Holland J H.Classifier system and genetic algorithms[J]. Artificial Intellifence, 1989, 40(9): 1-3.
  • 5Dagli C,Schierholt K. Stock market prediction using different neural network classification architectures[A]. In: IEEE/IAFE 1996 Conference on Computational Intelligence for Financial Engineering[C]. 1996. 72-78.
  • 6Zeigler. Theory of Modeling and Simulation[M]. London: John Wiley & Sons Press, 1976. 45-152.
  • 7Kittock J E. Emergent conventions and the structure of multi-agent systems[A]. In: The Economy as an Evolving Complex System[M]. New Mexico: Addison Wesley Press, 1993. 371-383.
  • 8Hamiton, Nash, Pooch. Distributed Simulation[M]. Washington: CRC Press, 1997. 376-457.
  • 9Puccia C J, Levins R. Qualitative Modeling of Complex Systems[M]. Boston: Harvard University Press, 1985. 217-298.
  • 10Jiang L. Economic entropy and its application to the structure of the transport system-Quality & quantity[J]. International Journal of Methodology, 1996, 30(2): 161-171.

共引文献470

同被引文献8

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部