期刊文献+

基于喷涂和等离子体处理的柔性应变传感器 被引量:1

Flexible strain sensor based on spraying and plasma processing
下载PDF
导出
摘要 为提高柔性传感器传感层图案的可设计性和操作可重复性,并使传感器的灵敏度得到提高,采用二维平面可控喷涂和低温等离子体处理技术,制备了以多壁碳纳米管为传感层、以Ecoflex 0050为基层的柔性可拉伸电阻应变传感器。研究了低温等离子体处理对传感器电阻值、稳定性以及灵敏度因数的影响。结果表明:采用可控喷涂的方法制备的传感层对拉伸应变具有很好的响应;在低温等离子体处理之后,传感层的初始电阻增大为原来的15倍;在应变为10%的2 500次往复拉伸过程中,采用等离子体处理制备的柔性电阻应变传感器电阻变化保持平稳,且灵敏度因数从3.9升至11.5。等离子体处理后传感器灵敏度得到提高。 In order to improve the designability and repeatability of sensing layer pattern of flexible sensor and improve sensitivity of the sensor,a flexible stretchable resistance strain sensor are prepared using Ecoflex 0050 as the base layer using multi-walled carbon nanotubes as sensing layer,using two-dimensional planar controllable spraying and low-temperature plasma processing technology.The effects of low temperature plasma treatment on the resistance,stability and sensitivity factor of the sensor are studied.The results show that the sensing layer prepared by the controlled spraying method has a good response to tensile strain;the initial resistance of the sensing layer increases by 15 times after the low temperature plasma treatment;the strain is 10%,during the 2500 reciprocating stretching process,the resistance change of the flexible resistance strain sensor prepared by plasma treatment remained stable,and the sensitivity factor increased from 3.9 to 11.5.The sensitivity of the sensor is improved after plasma treatment.
作者 李荣军 于源 谭晶 王瑞雪 焦志伟 杨卫民 LI Rongjun;YU Yuan;TAN Jing;WANG Ruixue;JIAO Zhiwei;YANG Weimin(College of Mechanical and Electrical Engineering,Beijing University of Chemical Technology,Beijing 100029,China)
出处 《传感器与微系统》 CSCD 北大核心 2021年第8期76-78,共3页 Transducer and Microsystem Technologies
基金 广东省省级科技计划资助项目(2016B090915001) 珠海市产业核心和关键技术攻关方向项目(ZH01084702180085HJL)。
关键词 喷涂 柔性应变传感器 等离子体 spraying flexible strain sensors plasma
  • 相关文献

参考文献2

二级参考文献43

  • 1栾英豪,张恒,张永明,李虹,刘燕刚.全氟磺酸离子交换膜的制备与性能研究[J].功能高分子学报,2005,18(1):62-66. 被引量:19
  • 2Chen Qidao, Dai Liming, Gao Mei, et al. J. Phys. Chem. B, 2001, 105(3): 618-622.
  • 3Yu Ke, Zhu Ziqiang, Xu Min, et al. Surface and coatings technology, 2004, 179(1) : 63-66.
  • 4Kichambare P D, Chen L C, Wang C T, et al. Surface and coatings technology, 2001, 72(2):218-222.
  • 5Felten A, Bittencourt C, Pireaux J J. J. Appl. Phys. , 2005, 98(3): 074308-074312.
  • 6Valentini L, Puglia D, Armentano I, et al. Chem. Phys. Lett., 2005, 403(4): 385-389.
  • 7Zhu Y W, Cheong F C, Yu T. et al. Carbon, 2005, 43 (2) : 395-402.
  • 8Kay Hyeok,Kyung Ah Park, Jeong Gu Heo, et al. J. AM. CHEM. SOC. , 2003, 125(10): 3057-3061.
  • 9Luca Valentini, Jelena Macan, Ilaria Armentano, et al. carbon, 2006,44(11) :2196.
  • 10Bishun N Khare, Patrick Wilhite and Meyyappan M, et al. Chem. Mater. , 2006, 18(11): 906-911.

共引文献8

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部