期刊文献+

基于HAN的双通道复合模型的文本情感分类 被引量:6

Text sentiment classification based on HAN andtwo-channel composite model
下载PDF
导出
摘要 针对单一的神经网络模型结构简单、传统的注意力模型无法有效提取层次化的文本特征的问题,提出了一种基于HAN的双通道复合模型的文本情感分类。首先,在一个通道上使用双向门限循环(GRU)神经网络提取序列化信息,并引入层次化注意力网络(HAN)学习序列层次化文本信息。其次,在另一通道中借助分解卷积神经网络(CNN)获取局部文本特征,结合HAN学习深层次特征信息。最后,将两个通道进行融合,丰富特征向量,优化文本情感分类效果,提高模型的准确率。在3组中文数据集上进行多组对比实验,本文模型准确率分别达到92.06%,91.08%,92.71%,证明提出模型比单一通道模型表现更出色,使用层次化注意力网络比传统的注意力网络效果更好。 Aiming at the problem that a single neural network model has a simple structure and traditional attention models cannot effectively extract hierarchical text features,propose a text sentiment classification based on HAN and two-channel composite model.Firstly,a bidirectional gated recurrent unit neural network is used to extract serialized information on a channel,and a hierarchical attention network(HAN)is introduced to learn serial hierarchical text information.Secondly,in the other channel,use the convolutional neural network(CNN)to obtain local text features,and use HAN to learn deep-level feature information.Finally,the two channels are fused to enrich the feature vectors,optimize effect of text sentiment classification and improve the accuracy of the model.Comparative experiments on three Chinese data sets show that the accuracy of the models in this paper is 92.06%,91.08%,and 92.71%,respectively.It proves that the proposed model perform better than single channel model,the effect of the HAN is better.
作者 李辉 黄钰杰 李金秋 LI Hui;HUANG Yujie;LI Jinqiu(School of Physics and Electronic Information,Henan Polytechnic University,Jiaozuo 454000,China;School of Electrical Engineering and Automation,Henan Polytechnic University,Jiaozuo 454000,China)
出处 《传感器与微系统》 CSCD 北大核心 2021年第8期121-125,共5页 Transducer and Microsystem Technologies
基金 河南省基础与前沿技术研究计划项目(152300410103) 河南省教育厅科学技术研究重点项目(13A510330)。
关键词 卷积神经网络 门限循环神经网络 层次化注意力网络 情感分析 convolutional neural network(CNN) gated recurrent unit(GRU)neural network hierarchical attention network(HAN) sentiment analysis
  • 相关文献

参考文献12

二级参考文献55

  • 1朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 2姚天昉,娄德成.汉语语句主题语义倾向分析方法的研究[J].中文信息学报,2007,21(5):73-79. 被引量:78
  • 3PANG B, LEE L, VAITHYANATHAN S. Thumbs up? Sentimentclassification using machine learning techniques [ C ] // Proceedingsof the ACL-02 Conference on Empirical Methods in Natural Lan-guage Processing. Stroudsburg: Association for Computational Lin-guistics, 2002,10: 79 -86.
  • 4CUI H, MITTAL V, DATAR M. Comparative experiments on senti-ment classification for online product reviews[ C] // Proceedings ofthe 21st National Conference on Artificial Intelligence. Menlo Park:AAAI Press, 2006,2: 1265 -1270.
  • 5TURNEY P D. Thumbs up or thumbs down? semantic orientationapplied to unsupervised classification of reviews[ C] // Proceedingsof the 40th Annual Meeting on Association for Computational Lin-guistics. Stroudsburg: Association for Computational Linguistics,2002: 417 -424.
  • 6YUEN R W M, CHAN T Y W, LAI T B Y, et al Morpheme-basedderivation of bipolar semantic orientation of Chinese words[ C]//Proceedings of the 20th International Conference on ComputationalLinguistics. Stroudsburg: Association for Computational Linguistics,2004:1008-1014.
  • 7WIEBE J, BREUCE R,BELL M,et al. A corpus study ofevaluative and speculative language [ C ]// Proceedings of the 2ndACL SIGdial Workshop on Discourse and Dialogue. Stroudsburg :Association for Computational Linguistics, 2001 ,16 : 1 - 10.
  • 8WILSON T, WIEBE J, HOFFMANN P. Recognizing contextualpolarity in phrase-level sentiment analysis[ C]// Proceedings of the2005 Conference on Human Language Technology and EmpiricalMethods in Natural Language Processing. Stroudsburg : Associationfor Computational Linguistics, 2005 : 347 - 354.
  • 9TAKAMURA H, INUI T. Latent variables models for semanticorientation of phrases[ C]// Proceedings of the 11th Conference ofthe European Chapter of the Association for ComputationalLinguistics. Tokyo : Fuji Press, 2006 : 201 -208.
  • 10MATSUNOTO S, TAKAMURA H, OKUMURA M. Sentimentclassification using word sub-sequences and dependency sub-trees[C ]// Proceedings of the 9th Pacific-Asia Conference onKnowledge Discovery and Data Mining. Berlin : Springer, 2005 :301 -310.

共引文献396

同被引文献43

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部