期刊文献+

3D迁移网络的阿尔茨海默症分类研究 被引量:4

3D Transfer Learning Network for Classification of Alzheimer’s Disease
下载PDF
导出
摘要 阿尔兹海默症目前还无法被治愈,若能对其正确诊断,则可采用正确治疗方式延缓病人病情。为减少人工诊断的时间和成本,采用机器学习方法来辅助人工诊断阿尔兹海默症,提出了一种利用3D核磁共振成像信号来诊断的迁移学习方法。该方法采用MobileNet迁移网络来提取瓶颈特征,并增加了一个有监督训练的顶层来进一步降维和提取特征,最后在分类层中将被试者所有切片的特征进行合并和训练,完成阿尔兹海默症与正常控制的分类。该方法的优点在于,可使网络的训练时间下降,提高分类准确率。实验采用了OASIS数据对该方法进行测试,结果表明,该方法的分类准确率比传统迁移学习网络提高了约8个百分点,而时间只有传统迁移方法的1/60。 Alzheimer’s disease cannot be cured at present.If Alzheimer’s disease can be correctly diagnosed,a correct treatment will delay the patient’s condition.To reduce the time and cost of manual diagnosis for Alzheimer’s disease,this paper adopts machine learning to assistantly diagnose Alzheimer’s disease,and proposes a transfer learning method that uses 3D Magnetic Resonance Imaging(MRI)signals.The proposed method uses a separable convolutional network,MobileNet transfer network to complete the classification of Alzheimer’s disease and normal control.The method extracts preliminary features of slices from a raw MRI image on a bottleneck layer,reduces dimensions and extracts further features on a supervised training top layer,and finally combines and trains the features of all slices on a classification layer.The advantage of this transfer learning method to extract image features is that,it can reduce the training time of the network and improve the classification accuracy.In experiment,the proposed method is tested with a group of OASIS data.The experimental results show that compared with the traditional transfer learning network,the classification accuracy of the proposed method can be improved by about 8 percentage points,and the time can be reduced to 1/60.
作者 陆小玲 吴海锋 曾玉 孔伶旭 罗金玲 LU Xiaoling;WU Haifeng;ZENG Yu;KONG Lingxu;LUO Jinling(School of Electric&Informative Engineering,Yunnan Minzu University,Kunming 650504,China)
出处 《计算机工程与应用》 CSCD 北大核心 2021年第16期253-262,共10页 Computer Engineering and Applications
基金 国家自然科学基金(61762093) 云南省科技厅第十七批省中青年学术和技术带头人项目(2014HB019) 云南省重点应用和基础研究基金(2018FA036) 云南省教育厅科学研究基金项目(2020Y0238) 云南省高校科技创新团队项目。
关键词 阿尔兹海默症 迁移学习 核磁共振成像(MRI) MobileNet OASIS Alzheimer’s disease transfer learning Magnetic Resonance Imaging(MRI) MobileNet OASIS
  • 相关文献

参考文献3

二级参考文献13

  • 1Westman E,Aguilar C,Muehlboeck J S,et al.Regional magnetic resonance imaging measures for multivariate analysis in Alzheimers disease and mild cognitive impairment[J].Brain Topogr,2013,26(1):9-23.
  • 2Teipel S J,Grothe M,Lista S,et al.Relevance of magnetic resonance imaging for early detection and diagnosis of Alzheimer disease[J].Med Clin N Am,2013,97(3):399-424.
  • 3Rangini M,Jiji G W.Detection of Alzheimers disease through automated hippocampal segmentation[C]//Automation,Computing,Communication,Control and Compressed Sensing(iMac4s),2013International Multi-Conference on IEEE,2013:144-149.
  • 4Gerardin E,Chételat G,Chupin M,et al.Multidimensional classification of hippocampal shape featuresdiscriminates Alzheimers disease and mild cognitive impairment from normal aging[J].NeuroImage,2009,47(4):1476-1486.
  • 5Zhou L,Lieby P,Barnes N,et al.Hippocampal shape analysis for Alzheimers disease using an efficient hypothesis test and regularized discriminative deformation[J].Hippocampus,2009,19(6):533-540.
  • 6Lui L M,Wong T W,Thompson P,et al.Shape-base diffeomorphic registration on hippocampal surfaces using beltrami holomorphic flow[J].MICCAI,2010,13(2):323-330.
  • 7FMRIB.FSL[EB/OL].(1998-05-13)[2013-05-15] http://www.fmrib.ox.ac.uk/fsl/downloading.html.
  • 8Yousefi S,Kehtarnavaz N,Gholipour A.Improved labeling of subcortical brain structures in Atlas-based segmentation of magnetic resonance images[J].IEEE Transactions on Bio-Medical Engineering,2012,59(7):1808-1817.
  • 9Lui L M,Wong T W,Thompson P M,et al.Compression of surface registration using Beltrami coefficients[J].IEEE Conference on,2010,13(18):2839-2846.
  • 10雷露雯,王勇.阿尔茨海默病发病机制与炎症研究进展[J].医学综述,2008,14(20):3041-3043. 被引量:2

共引文献12

同被引文献42

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部