期刊文献+

小型救助船舶主动式液压互联悬架系统的设计与仿真 被引量:4

Design and Simulation of Active Hydraulic Interconnected Suspension System for Small Rescue Ship
下载PDF
导出
摘要 传统小型救助船舶悬架系统一般采用被动式弹簧阻尼悬架,船舶的舒适性和操纵稳定性较差,应用范围具有局限性。针对这一问题,提出一种新型主动式液压互联悬架系统。该悬架系统充分利用互联的液压回路,削弱波浪对救助船舶本体造成的冲击和振动,并能主动地调节船体姿态,以提高救助船舶对波浪的适应能力。基于AMESim平台,搭建液压悬架系统的动力学模型,并对模型进行联合仿真,分析不同海况下悬架的动态特性。研究结果表明:与传统被动式弹簧阻尼悬架相比,主动式液压互联悬架系统的波浪自适应能力较好,能提高救助船舶在极端海况下的安全性。 Traditional small rescue ship suspension system generally use passive spring damping suspension.The comfort and handling stability of the ship are poor,and the scope of its application is limited.Aiming at this problem,a new active hydraulic interconnected suspension system is proposed.In order to weaken the shock and vibration on rescue ship,this system based on the characteristic of the interconnected hydraulic circuit.It can also actively adjust the attitude of the hull,so as to improve the adaptability of the rescue ship to the waves.The effect of this hydraulic suspension system is analyzed by AMESim,Including the construction of the model and the operation of combined simulation.Through the figures,dynamic characteristics of the suspension under different sea conditions are analyzed.The results show that compared with the traditional spring-damping passive suspension,the active hydraulic interconnected suspension system has better wave adaptive capability.and it can improve the safety of rescue ships under severe sea conditions.
作者 王默 度红望 熊伟 WANG Mo;DU Hong-wang;XIONG Wei(School of Naval Architecture and Marine Engineering,Dalian Maritime University,Dalian,Liaoning 116026)
出处 《液压与气动》 北大核心 2021年第8期138-144,共7页 Chinese Hydraulics & Pneumatics
基金 中央高校基本科研业务费专项(3132019352,3132020123)。
关键词 救助船舶 液压互联悬架 主动控制 波浪适应 AMESIM仿真 rescue ship hydraulic interconnected suspension system active control wave adaption AMESim simulation
  • 相关文献

参考文献5

二级参考文献42

  • 1刘金琨.先进PID控制[M].北京:电子工业出版社,2004.
  • 2庄德军.主动油气悬架车辆垂向与侧向动力学性能研究[D].上海:上海交通大学,2006.
  • 3CAMPOS J, DAVIS L, LEWIS F L, et al. Active Suspension Control of Ground Vehicle Heave and Pitch Motions [C] // Proceedings of the 7th IEEE Mediterranean Conference on Control and Automation, Haifa, Israel, June 1999: 222-233.
  • 4METZ D, MADDOCK J. Optimal Ride Height and Pitch Control for Championship Race Cars [J]. International Federation of Automatic Control, 1986, 22 (5) : 509 -520.
  • 5AKAR M, KALKKUHL J C, SUISSAA. Vertical Dynamics Emulation Using a Vehicle Equipped with Active Suspension [C]//Proc. of the IEEE Intelligent Vehicles Symposium, Istanbuh Turkey, 2007: 13-15.
  • 6KIM H, LEE H. Height and Leveling Control of Automo- tive Air Suspension System Using Sliding Mode Approach[J]. IEEE Transactions on Vehicular Technology, 2011, 60(5) : 2027-2041.
  • 7YAMASHITA M. Hoo Control of an Automotive Active Suspension [C] //Proceedings of the 29th Conference on Decision and Control, Honolulu, Hawaii, December 1990: 2244-2250.
  • 8ALLEYNE A, HEDNCK J K. Nonlinear Adaptive Control of Active Suspensions [J]. IEEE Trans. Control Syst. Tech- nology, 1995, 3(1) : 94-101.
  • 9KNORN F. Modelling and Control of an Active Hydro- pneumatic Suspension [D].Otto-von-Guericke-Universitat Magdeburg, 2006.
  • 10GURAN A. Dynamics with Friction Modeling, Analysis and Experiment Part Ⅱ [M]. London: World Scientific, 2001.

共引文献32

同被引文献31

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部