期刊文献+

基于关联文本的知识图谱表示学习研究

Research on Knowledge Graph Representation Learning Based on Associated Text
下载PDF
导出
摘要 近年来的研究表示,知识图谱嵌入对于学习多关系数据的表示是有效的。但是,大多数方法都局限于知识图谱中的结构化数据,这阻碍了实体语义信息的全面表达。因此,要优化嵌入,重要的是考虑更广泛的信息来源,例如文本、图像等。通过获取每个实体的相关文本文档,根据关系生成文本表示,与此同时生成结构表示,将两种表示联合学习。通过链接预测任务评估模型效果,与单独的平移距离模型相比,这种方法有更好的性能。 Recent studies show that knowledge graph embedding is effective for learning multi relational data representation.However,most methods are limited to structured data in knowledge graph,which hinders the full expression of entity semantic information.Therefore,to optimize the embedding,it is important to consider a wider range of information sources,such as text,images and so on.By obtaining the relevant text documents of each entity,the text representation is generated according to the relationship,and the structure representation is generated at the same time,and the two representations are learned jointly.Compared with the single translation distance model,this method has better performance.
作者 潘亚宁 孟玉雪 PAN Yaning;MENG Yuxue(College of Artificial Intelligence,North China University of Science and Technology,Tangshan 063210)
出处 《现代计算机》 2021年第20期44-47,51,共5页 Modern Computer
基金 河北省“三三三人才工程”培养经费项目(No.A201803082)。
关键词 知识图谱 表示学习 文本信息 Knowledge Graph Representation Learning Text Information
  • 相关文献

参考文献1

二级参考文献82

  • 1Miller G A. WordNet: A lexical database for English [J]. Communications of the ACM, 1995, 38(11): 39-41.
  • 2Bollacker K, Evans C, Paritosh P, et al. Freebase: A collaboratively created graph database for structuring human knowledge [C] //Proe of KDD. New York: ACM, 2008: 1247-1250.
  • 3Miller E. An introduction to the resource description framework [J]. Bulletin of the American Society for Information Science and Technology, 1998, 25(1): 15-19.
  • 4Bengio Y. Learning deep architectures for AI [J]. Foundations and Trends in Machine Learning, 2099, 2 (1) 1-127.
  • 5Bengio Y, Courville A, Vincent P. Representation learning: A review and new perspectives [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1798-1828.
  • 6Turian J, Ratinov L, Bengio Y. Word representations: A simple and general method for semi-supervised learning [C]// Proc of ACL. Stroudsburg, PA: ACL, 2010:384-394.
  • 7Manning C D, Raghavan P, Schutze H. Introduction to Information Retrieval [M]. Cambridge, UK: Cambridge University Press, 2008.
  • 8Mikolov T, Sutskever I, Chen K, et al. Distributed representations of words and phrases and their eompositionality [C] //Proe of NIPS. Cambridge, MA: MIT Press, 2013:3111-3119.
  • 9Zhao Y, Liu Z, Sun M. Phrase type sensitive tensor indexing model for semantic composition [C] //Proc of AAAI. Menlo Park, CA: AAAI, 2015: 2195-2202.
  • 10Zhao Y, Liu Z, Sun M. Representation learning for measuring entity relatedness with rich information [C] //Proc of IJCAI. San Francisco, CA: Morgan Kaufmann, 2015: 1412-1418.

共引文献260

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部