期刊文献+

基于低方差滤波算法的改进降维算法 被引量:1

Improved Dimensionality Reduction Algorithm Based on Low Variance Filtering Algorithm
下载PDF
导出
摘要 数据预处理在深度学习中越来越重要,而对于处理高维数据,降维成了数据预处理过程中必不可少的一部分。低方差滤波算法是一种常用的降维算法,但降维前的归一化操作处理时间消耗一定的时间和计算资源。所以,本文提出了一种基于低方差滤波算法的改进降维算法,通过对方差取算数平方根再除以均值的方法,省去了在降维前的归一化操作,从而减少了数据预处理的计算时间,提高了算法的效率,节省了计算资源。 Data preprocessing is becoming more and more important in deep learning,and for processing high-dimensional data,dimensionality reduction has become an essential part of the data preprocessing process.The low-variance filtering algorithm is a commonly used dimensionality reduction algorithm,but the processing time of the normalization operation before dimensionality reduction consumes a certain amount of time and computing resources.Therefore,this paper proposes an improved dimensionality reduction algorithm based on a lowvariance filtering algorithm.By taking the square root of the variance and dividing by the mean,the normalization operation before dimensionality reduction is omitted.This reduces the calculation time for data preprocessing,improves the efficiency of the algorithm,and saves computing resources.
作者 乔铭宇 陈旻杰 张琳那 QIAO Mingyu;CHEN Minjie;ZHANG Linna(North China University of Technology,Beijing 100144)
机构地区 北方工业大学
出处 《现代计算机》 2021年第20期56-59,共4页 Modern Computer
关键词 降维 方差 数据预处理 归一化 均值 Dimensionality Reduction Variance Data Preprocessing Normalization Mean
  • 相关文献

参考文献5

二级参考文献38

共引文献23

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部