摘要
作为电力系统保护的第二道防线,安全稳定控制系统(简称稳控系统)对保障电网的可靠运行有着重要作用。文中在分析稳控系统架构以及装置不同运行模式特点的基础上,提出了一种稳控系统可靠性分析方法。首先,将稳控系统可靠性分为不同层间可靠性进行分析。然后,从稳控装置硬件、软件、运行特点以及通信通道的安全性出发,建立对不同稳控系统均有一定适用性的故障树模型。最后,考虑各部分的故障率以及维修时长,利用序贯蒙特卡洛法对模型进行仿真和可靠性分析。以实际稳控系统架构为例,通过仿真分析比较了该稳控系统在不同运行模式下的可靠性,验证了该方法的有效性。
As the second defense line for power system protection,the security and stability control system(SSCS)plays an important role in ensuring the reliable operation of the power grid.Based on the analysis of the structure of the SSCS and the characteristics of different operation modes of the device,a reliability analysis method of the SSCS is proposed.Firstly,the reliability of the SSCS is divided into the reliability between different levels for analysis.Then,considering the hardware,software,operation characteristics of the stability control device and the security of the communication channel,a fault tree model which is applicable to different SSCSs is established.Finally,considering the failure rate and maintenance time of each part,the sequential Monte Carlo method is used to simulate and analyze the reliability of the model.Taking the actual SSCS architecture as an example,the reliability of the system in different operation modes is compared by simulation analysis,and the effectiveness of the method is verified.
作者
朱介北
邱威
孙宁
朱学科
霍超
荀思超
ZHU Jiebei;QIU Wei;SUN Ning;ZHU Xueke;HUO Chao;XUN Sichao(School of Electrical and Information Engineering,Tianjin University,Tianjin 300072,China;National Electric Power Dispatching and Control Center,State Grid Corporation of China,Beijing 100031,China;NARI Group Corporation(State Grid Electric Power Research Institute),Nanjing 211106,China;Northwest Branch of State Grid Corporation of China,Xi’an 710048,China;Yancheng Power Supply Company of State Grid Jiangsu Electric Power Co.,Ltd.,Yancheng 224001,China)
出处
《电力系统自动化》
EI
CSCD
北大核心
2021年第15期21-27,共7页
Automation of Electric Power Systems
基金
国家电网公司科技项目(5100-201940006A-0-0-00)。
关键词
安全稳定控制系统
运行模式
可靠性模型
故障树
序贯蒙特卡洛
security and stability control system(SSCS)
operation mode
reliability model
fault tree
sequential Monte Carlo