期刊文献+

无砟轨道板裂缝三维激光检测系统研发与算法验证 被引量:7

Development and Algorithm Verification of 3D Laser Detection System for Non-ballasted Track Slab Cracks
下载PDF
导出
摘要 针对高速铁路无砟轨道板的表面损伤问题,现有的检测系统与方法仍难以达到高精度、高速度、高准确度及自动化要求。随着高速微型计算机和三维激光扫描技术的发展,应用超高精度3D自动化检测系统来提升轨道板伤损识别精度和检测效率的趋势越发明显。在已有数字化信息采集与自动分析系统基础上自主研发无砟轨道板裂缝三维激光检测系统,通过融合自适应阈值分割、PGM概率图模型与SVM机器学习方法建立轨道板裂缝集成学习识别算法,准确、快速、智能识别轨道板裂缝。结果表明,该系统能够获取高精度轨道板三维图像数据,所提出的轨道板裂缝集成学习识别算法能达到较高的准确率(均值97.3%)和召回率(均值92.6%),综合表现优于传统算法。 Aiming at the surface damage of non-ballasted track slab of high-speed railway,the existing detection systems and methods can hardly achieve high precision,high speed,high accuracy and automation performance.The development of high-speed microcomputer and 3D laser scanning technology results in wider application of ultra-high precision 3D automatic detection system to improve the accuracy and efficiency of crack identification.This study developed a 3D laser crack detection system for non-ballasted track slabs based on the research of existing digital information collection and automatic analysis system.Ensemble-learning based crack detection algorithm was developed by integrating adaptive threshold segmentation,PGM probability map model and SVM machine learning algorithms,to achieve fast and intelligent identification of railway slab cracks.The results indicate that the developed system could acquire high-quality 3D surface data of non-ballasted track slab.This paper achieved the pixel level recognition of crack by ensemble learning with relatively high accuracy(97.3%)and recall rate(92.6%).The proposed algorithm in this study outperforms the traditional crack identification algorithms.
作者 战友 阳恩慧 马啸天 安哲立 代先星 王郴平 ZHAN You;YANG Enhui;MA Xiaotian;AN Zheli;DAI Xianxing;WANG Chenping(School of Civil Engineering,Southwest Jiaotong University,Chengdu 610031,China;Railway Engineering Research Institute,China Academy of Railway Sciences Corporation Limited,Beijing 100081,China;School of Civil and Environment Engineering,Oklahoma State University,Stillwater 74078,USA)
出处 《铁道学报》 EI CAS CSCD 北大核心 2021年第7期114-120,共7页 Journal of the China Railway Society
基金 国家自然科学基金(52008354,U1534203) 中国博士后科学基金(2019M663557) 中央高校基本科研业务费(2682020CX65)。
关键词 三维激光 无砟轨道板 裂缝 集成学习 3D lasers non-ballasted track cracking ensemble learning
  • 相关文献

参考文献5

二级参考文献42

  • 1吴章江,李湘敏.计算机图像处理在铁路上的应用[J].中国铁道科学,1993,14(1):36-41. 被引量:4
  • 2王华,朱宁,王祁.应用计盒维数方法的路面裂缝图像分割[J].哈尔滨工业大学学报,2007,39(1):142-144. 被引量:17
  • 3王刚,肖亮,贺安之.脊小波变换域模糊自适应图像增强算法[J].光学学报,2007,27(7):1183-1190. 被引量:28
  • 4Kenneth R,Castleman.Digital Image Processing.北京:清华大学出版社,1997
  • 5Video Inspection System for Railroad Tracks.ENSCO,INC.2000
  • 6SINGH M,SINGH S,JAISWAIL. Autonomous Rail Track Inspection Using Vision Based System[A].Alexandria:IEEE Corference Publications,2006.56-59.
  • 7SHOLL H,AMMAR R,GREENSHIELDS I. Application of Computing Analysis to Real-Time Railroad Track Inspection[A].Budapest:IEEE Conference Publications,2006.1-6.
  • 8柴雪松;朱锦堂;马辉.青藏铁路高原巡检车的研究[A]北京:中国科学技术出版社,2005119-126.
  • 9KHANDOGIN I,KUMMERT A,MAIWALD D. Automatic Damage Detection for Railroad Tracks by the Analysis of Video Images[A].San Diego:IEEE Corference Publications,1997.1130-1134.
  • 10MARINO F,DISTANTE A,MAZZEO P L. A Real Time Visual Inspection System for Railway Maintenance:Automatic Hexagonal Headed Bolts Detection[J].IEEE Transactions on Systems Man and Cybernetics-Part C:Applications and Reviews,2007,(03):418-428.

共引文献102

同被引文献188

引证文献7

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部