期刊文献+

基于深度学习的临床心电图分类算法 被引量:6

Clinical Electrocardiogram Classification Algorithm Based on Deep Learning
下载PDF
导出
摘要 心电图反映了人体心脏健康状况,是临床诊断心血管类疾病的重要依据。随着心电图数量的快速增长,计算机辅助心电图分析的需求愈加迫切,心电图自动分类作为实现计算机辅助心电图分析不可或缺的技术手段,具有重要的医学价值。由于心电信号非常微弱、抗干扰性差,传统心电图分类算法存在测试集上效果好,实际临床应用效果欠佳的问题。为此,本文研究一种基于多导联二维结构的一维卷积ResNet网络结构,通过平移起始点、“加噪”等数据增强手段增加训练样本多样性,并采用Focal Loss损失函数优化病人个体的心电图分类模型。该模型利用2万条完整的8导联心电图数据,共计34类心电异常事件进行分类实验,取得了0.91的F1值、93.96%的准确率和87.89%的召回率的分类性能。实验结果表明,该心电图分类算法模型具有较优的深层特征挖掘与分类能力,验证了其在心电异常自动分类上的有效性。 Electrocardiogram(ECG)which can reflect the health state of human heart is widely used in clinical examination on heart diseases as an important basis.With the increasing number of ECG data,the demand of the computer-assisted electrocardiogram analysis has become urgent.Electrocardiogram automatic classification as an indispensable technical means of computer aided electrocardiogram analysis has important medical value.However,because of the weakness and low anti-interference of ECG signal,the traditional ECG classification algorithms have the problems of good effect on test set and poor effect in clinical application.So,this paper introduces a ResNet network structure of one-dimensional convolution based on multi-lead two-dimensional structure,increases the diversity of training samples by means of data enhancement such as translation starting point and adding noise,and uses Focal Loss function to optimize the ECG classification model of individual patients.The model uses 20000 complete 8-lead ECG data and a total of 34 types of abnormal ECG events for classification experiments.The results obtained are:F1 score 0.91,accuracy 93.96%,recall rate 87.89%.Experiment results show the proposed algorithm has better ability of deep feature mining and classification,which verifies its effectiveness in arrhythmia classification.
作者 刘守华 王小松 刘昱 LIU Shou-hua;WANG Xiao-song;LIU Yu(University of Chinese Academy of Sciences, Beijing 100049, China;Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China;Beijing Key Laboratory of Radio Frequency IC Technology for Next Generation Communications, Beijing 100029, China)
出处 《计算机与现代化》 2021年第8期52-57,共6页 Computer and Modernization
基金 天津市院市合作专项(18YFYSZC00130)。
关键词 深度学习 残差网络 卷积神经网络 心电图 数据分布 损失函数 deep learning residual network convolutional neural network(CNN) ECG data distribution loss function
  • 相关文献

参考文献6

二级参考文献47

  • 1郭荣峰,郭永钦,徐绍春,蔡晓峰,李警雷.上海市院前急救心肺复苏现状和展望[J].中华急诊医学杂志,2004,13(8):518-520. 被引量:59
  • 2朱泽煌,胡广书,郭恒,崔子经.MIT—BIH心电数据库的开发及用作检测标准[J].中国生物医学工程学报,1993,12(4):244-249. 被引量:25
  • 3王继成,吕维雪.基于神经网络的一种心电图分类法[J].中国生物医学工程学报,1995,14(4):306-311. 被引量:7
  • 4陈灏珠.Braunwald心脏病学[M].北京:人民卫生出版社,2007:1556-1558.
  • 5Philip de Chazal,Branko G.Celler.Selecting a neural network structure for ECG diagnosis,Processing of the 20th annual international conference of the IEEE engineering in medicine and biology society,1998,1422-1425,(20)
  • 6M.O.Dwyer,M.de.Chazal,P.de.Reilly,et al.Beat classification for use arrhythmia analysis[J].Computers in Cardiology,2000,(27):395-398
  • 7Bert Uwe Kohler,Carsten Hennig,Reinhold Orglmeister.The Principles of Software QRS Deteetion[J].IEEE Trans.on BME,2002,(2):42-57
  • 8A Recognition of ECG arrhythmias using artificial neural networks.Proceedings of the 23rd annual embs international conference,2001,1680-1683
  • 9Schatzkin A, Cupples LA, Heeren T, et al. The epidemiology of sudden unexpected death: risk factors for men and women in the Framingham Heart Study [ J ] . Am Heart J, 1984, 107 ( 6 ) : 1300 - 1306.
  • 10Zheng ZJ, Croft JB, Giles WH, et al. Sudden cardiac death in the United States, 1989 to 1998[J]. Circulation, 2001, 104(18): 2158 -2163.

共引文献147

同被引文献59

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部