期刊文献+

随机发生非线性与测量时滞的滤波算法设计

Design on Filtering Algorithm with Random Nonlinearity and One-step Measurement Delay
下载PDF
导出
摘要 针对一类具有随机发生非线性和一步测量时滞的时变系统的滤波问题。通过引入服从伯努利分布的随机序列,描述随机发生非线性与一步测量时滞。与此同时,引入事件触发传输机制且对所提出系统进行增广构造出滤波器。从而提出一种具有一步测量时滞与随机发生非线性的滤波算法。使同时存在一步测量时滞、噪声和随机发生非线性的情况下,可以采用放缩找到滤波误差协方差矩阵的上界,并且通过设计滤波增益矩阵使得该上界的迹达到最小。最后,利用matlab算例仿真,验证所提出滤波算法的真实性与实用性。 This paper studies the filtering problem of a class of time-varying systems with random nonlinearity and one-step measurement delay.The random nonlinearity and one-step measurement delay are described by introducing the random sequences obeying Bernoulli distribution.At the same time,the event-triggered transmission mechanism is introduced and the proposed system is augmented to construct a filter.In this paper,a filtering algorithm with one-step measurement delay and random nonlinearity is proposed.When one-step measurement delay,noise and random nonlinearity exist at the same time,the upper bound of the covariance matrix of filtering error is found by scaling,and the trace of the upper bound is minimized by designing the filter gain matrix.Finally,the validity and practicability of the proposed filtering algorithm are verified by matlab simulation.
作者 高胜 计东海 GAO Sheng;JI Dong-hai(School of Science, Harbin University of Science Technology, Harbin 150080, China)
出处 《哈尔滨理工大学学报》 CAS 北大核心 2021年第3期160-166,共7页 Journal of Harbin University of Science and Technology
基金 国家自然科学基金(11571085).
关键词 时变离散系统 一步测量时滞 随机发生非线性 滤波 discrete time-varying systems one-step measurement delay random nonlinearity filter
  • 相关文献

参考文献3

二级参考文献16

  • 1ANDERSON O D B, MOORE B J. Optimal Filtering [ M ]. En- glewood Cliffs, NJ: Prentice Hall, 1979.
  • 2WANG Z, YANG F, HO C W D, et al. Robust H∞ Filtering for Stochastic Time-delay Systems with Missing Measurements [ J ]. IEEE Trans Signal Processing, 2006, 54:2579 - 2587.
  • 3KAPILA V, HADDAD MW. Memoryless H∞ Controllers for Dis- crete-time Systems with Time Delay [ J ]. Automatica, 1998, 34 (8): 1141-1144.
  • 4ZHANG Y, XU S, ZOU Y, et al. Delay-dependent Robust Stabi- lization for Uncertain Discrete-time Fuzzy Markovian Jump Systems with Mode-dependent Time Delays [ J ]. Fuzzy Sets and Systems,2011, 164(1) : 66 -81.
  • 5YUE D, LI H. Synchronization Stability of Continuous/Discrete Complex Dynamical Networks with Interval time-varying Delays [ J ]. Neurocomputing, 2010, 73 (4/5/6) : 809 - 819.
  • 6XU S, LAM J, YANG C. H∞ and Positive Real Control for Linear Neutral Delay Systems[ J]. IEEE Trans Automat Control, 2001, 46(8) : 1321 -1326.
  • 7RAKKIYAPPAN R., BALASUBRAMANIAM P. Delay-probabili- ty-distribution-dependent Stability of Uncertain Stochastic Genetic Regulatory Networks with Mixed time-varying Delays: An LMI Ap- proach [J]. Nonlinear Analysis, 2010, 4(3) : 600 -607.
  • 8YAZ E E, YAZ Y I. State Estimation of Uncertain Nonlinear Sto- chastic Systems with General Criteria [ J]. Applied Mathematics Letters, 2001, 14(5): 605-610.
  • 9LIU Y, WANG Z, LIIU X. State Estimation for Discrete-time Markovian Jumping Neural Networks with Mixed Mode-dependent Delays[J]. Phys Lett A, 2008, 372:7147 -7155.
  • 10SCHERER C, GAHIENT P, CHILALI M. Muhiobjective Out- put-feedback Control Via LMI Optimization [ J ]. IEEE Trans Automat Control, 1997, 42(7) : 896 -911.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部