期刊文献+

一种基于生物雷达的隐匿性伤情检测方法研究 被引量:1

Bio-radar based method for detecting occult injuries
下载PDF
导出
摘要 目的:针对院前急救中低成本、便携式伤情检测设备的研制需求,提出一种基于生物雷达的隐匿性伤情检测方法。方法:该方法基于某些隐匿性伤情出现会破坏人体浅表组织结构左右对称性的原理,使用单发单收冲激脉冲体制超宽带生物雷达测量人体左右两侧对称位置的回波差异,采用直达波定位保证左右测量位置的对称性,设计基于线性判别分析(linear discriminant analysis,LDA)的检测算法来量化回波差异。为验证方法的有效性,开展基于液态体模的模拟气胸探测实验。结果:在直接接触体模条件下,无气胸、左侧气胸和双侧气胸3种场景的差异数值分别为0.628 8、5.724 5和5.835 6;在穿透衣物条件下,无气胸、左侧气胸和双侧气胸3种场景的差异数值分别为2.234 2、4.255 0和6.768 2。结论:该方法初步实现了有/无伤情的检测,与现有技术相比具有体积小、测量方便、可穿透衣物的潜在优势,可为下一步设计一种低成本、便携式的非接触伤情检测装备提供可行的思路。 Objective To propose a bio-radar based occult injuries detection method for the development of low-cost,portable injury detection equipment for pre-hospital emergency care.Methods Some occult injuries disrupted the left-right symmetry of the superficial tissue structure of the body.Accordingly,the method proposed used an impulse ultra-wide band bio-radar with single-transmission-single-receiving antennas to measure the difference in echoes between the symmetrical parts in Lat direction of the human body and direct wave to ensure the symmetry during measurement,which designed a detection algorithm based on linear discrimination analysis to quantify the difference of the echoes.The experiments were carried out to simulate pneumothorax detection based on liquid body models so as to verify the validity of the method proposed.Results The difference values were 0.6288,5.7245 and 5.8356 respectively for the three scenarios of no pneumothorax,left pneumothorax and bilateral pneumothorax in case of direct contact with the phantom,and 2.2342,4.2550 and 6.7682 respectively for the three scenarios in case of penetrating clothing.Conclusion The method detects the existence of the injuries preliminarily,and gains advantages over the existing techniques in size,convenience and the ability to penetrate clothing,which provides a viable idea for designing a low-cost,portable,non-contact injury detection equipment in the future.
作者 薛慧君 王鹏飞 焦腾 安强 梁福来 张杨 王健琪 吕昊 XUE Hui-jun;WANG Peng-fei;JIAO Teng;AN Qiang;LIANG Fu-lai;ZHANG Yang;WANG Jian-qi;LYU Hao(Teaching and Research Section of Medical Electronics,School of Biomedical Engineering,Air Force Medical University,Xi'an 710032,China)
出处 《医疗卫生装备》 CAS 2021年第8期1-6,20,共7页 Chinese Medical Equipment Journal
基金 陕西省自然科学基础研究计划项目(2019JZ-35,2020JQ-443) 空军军医大学军事医学提升计划课题(2018JSTS04)。
关键词 生物雷达 超宽带 院前急救 伤情检测 线性判别分析 bio-radar ultra-wide band pre-hospital first aid injury condition detection linear discriminant analysis
  • 相关文献

参考文献6

二级参考文献37

  • 1庄哲民,张阿妞,李芬兰.基于优化的LDA算法人脸识别研究[J].电子与信息学报,2007,29(9):2047-2049. 被引量:25
  • 2VINJE W E, GALLANT J L. Sparse coding and deeorrelation in primary visual cortex during natural vi- sion [J]. Science, 2000, 287(5456) : 1273 - 1276.
  • 3ELAD M, AHARON M. Image denoising via sparse and redundant representations over learned dictionaries [ J ]. IEEE Trans. Image Processing, 2006, 15 (12) : 3369 - 3745.
  • 4MAIRAL J, ELAD M, SAPIRO G. Sparse representa- tion for color image restoration [ J]. IEEE Trans. Im-age Processing, 2008, 17( 1 ) : 53 -69.
  • 5MAIRAL J, BACH F, PONCE J, et al. NonIocal sparse models for image restoration [ C ]//Proc. IC- CV, 2009 : 2272 - 2279.
  • 6WANG C, YAN S, ZHANG L, et at. Multi - Label Sparse coding for automatic image annotation [ C ]// Proc. IEEE Conf. CVPR, 2009:1643 - 1650.
  • 7WRIGHT J, YANG A Y, GANESH A, et al. Robust face recognition via sparse representation [J]. IEEE Trans. Pattern Anal. Mach. Intel., 2009, 31 (2): 210 - 227.
  • 8TURK M A, PENTLAND A P. Face recognition using eigenfaces[J]. Computer Vision and Pattern Recogni- tion, 1991,3(1) :71 -86.
  • 9FIGUEIREDO M, NOWAK R, WRIGHT S. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems [ J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1 (4) :586 -597.
  • 10MALIOUTOY D, CETIn M, WILLSKY. Homotopy continuation for sparse signal representation [ C ]//Proc. ICASSP, 2005.

共引文献130

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部