期刊文献+

时间非齐次二态量子游荡的演化过程分析 被引量:1

The Analysis of Evolution Process in a Time-Inhomogeneous Two-State Quantum Walk
下载PDF
导出
摘要 建立时间非齐次二态量子游荡的数学模型,给出位置概率分布的计算表达式.通过计算演化算子的谱值和谱向量分析量子态的演化.推导出伊藤公式并进行矩阵分解和解释. In this paper,we establish a mathematical model for a time-inhomogeneous two-state quantum walk and give a calculation of the position probability distribution.By calculating spectral values and spectral vectors,we analyze the evolution of quantum states.Furthermore,we derive an Ito formula and get a matrix decomposition and its interpretation.
作者 林运国 Lin Yunguo(Linewell Software CO,LTD,Fujian Quanzhou 362000;College of Computer and Information Sciences,Fujian Agriculture and Forestry University,Fuzhou 350002)
出处 《数学物理学报(A辑)》 CSCD 北大核心 2021年第4期1097-1110,共14页 Acta Mathematica Scientia
基金 福建省自然科学基金(2016J01283) 福建农林大学科技创新专项基金(CXZX2020108A)。
关键词 量子游荡 非齐次 概率分布 谱值 伊藤引理 Quantum walk Inhomogeneous Probability distribution Spectral value Ito lemma
  • 相关文献

参考文献3

二级参考文献21

  • 1Kunita H. It6's stochastic calculus: its surprising power for applications. Stochastic Process Appl, 2010, 120:622-652.
  • 2Pelo P, Aurel A, Stan I. An Ito formula for a family of stochastic integrals and related Wong-Zakai theorems. Stochastic Processes and their Applications, 2013, 123:3183-3200.
  • 3Fujita T. Stochastic Calculus for Finance (in Japanese). Tokyo: Kodansha, 2002.
  • 4Fujita T. Random Walks and Stochastic Calculus (in Japanese). Tokyo: Nippon-Hyoron-Sha, 2008.
  • 5Konno N. A note on Ito's formula for discrete-time quantum walk. 2011, arXiv:1112.4335[quant-ph].
  • 6Ampadu C. Ito's formula for the discrete-time quantum walk in two dimensions. 3ournal of Quantum Information Science, 2012, 2:40-46.
  • 7Ko C. Interacting Fock spaces and the moments of the limit distribution for quantum random walk. Inf Dim Anal Quantum Probab Rel Topics, 2013, 16(1): 1350003.
  • 8Mackay T D, Bartlett S D, Stephenson L T, Sanders B C. Quantum walks in higher dimensions. J Phys A: Math Gen, 2002, 35:2745-2753.
  • 9Obata N. A note on Konno's paper on quantum walk. Inf Dim Anal Quantum Probab Rel Topics, 2006, 9:299-304.
  • 10Konishi N, Konno N. Localization of two-dimensional quantum walks. Phys Rev A, 2004, 69:052323.

共引文献5

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部