摘要
该文考虑随机环境因素的影响,建立了一类转换机制下具有非线性扰动的SIVS模型.对于具有白噪声的非自治随机SIVS流行病系统,给出了解的随机有界性和随机持久性的结果,并利用李雅普诺夫函数和Has'minskii周期解理论证明了非平凡正周期解的存在性.对于具有马尔科夫变换的系统,建立了遍历平稳分布的充分条件,分别得到了染病者在平均意义下持久性的阈值和灭绝性的阈值.最后,通过数值模拟支撑了理论结果.
In this paper,we present a stochastic SIVS epidemic model with nonlinear perturbations under regime switching.For the non-autonomous stochastic SIVS epidemic system with white noise,we provide results regarding the stochastic boundedness,stochastic permanence in mean,and we prove that the system has at least one nontrivial positive T-periodic solution by using Lyapunov function and Hasminskii's theory.For the system with Markov conversion,we establish sufficient conditions for existence of ergodic stationary distribution,and the thresholds for persistence in mean and the extinction of infected persons was obtained,respectively.Finally,some numerical simulations are carried out to support the theoretical results.
作者
张仲华
张倩
Zhang Zhonghua;Zhang Qian(School of Sciences,Xi'an University of Science and Technology,Xi'an 710054)
出处
《数学物理学报(A辑)》
CSCD
北大核心
2021年第4期1218-1234,共17页
Acta Mathematica Scientia
基金
国家自然科学基金(11201277)。